Loading [MathJax]/jax/output/CommonHTML/jax.js

NCERT Solutions for Class 9 Math Chapter 7.4 Triangles

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.4




1.    Show that in a right angled triangle, the hypotenuse is the longest side.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.4-Q 1-solution.jpg

   Given,

   A right triangle

   Find,

   hypotenuse is the longest side

   In the Fig.,

   we know that,

   âˆ A + ∠B + ∠C = 180°

   Now,

   âˆ B + ∠C = 90°

   Then,

   âˆ A = 90°

   âˆ´ ∠A = ∠B + ∠C

   âˆ´ ∠A > ∠B

   Similerly

   âˆ´ ∠A > ∠C

   âˆ´ BC > AC

   Similerly

   âˆ´ BC > AB

   âˆ´ BC is the longest side.

   So, hypotenuse is the longest side.

2.    In Fig. 7.48, sides AB and AC of â–µABC are extended to points P and Q respectively. Also, ∠PBC < ∠QCB. Show that AC > AB.

solution :

   Given,

   Side AB and AC of â–µABC are extended to points P and Q respectively. also, ∠PBC < ∠QCB.

   Find,

   AC > AB

   In the Fig.,

   âˆ ABC + ∠PBC = 180°[ Linear pairs of angles ]

   âˆ ABC + = 180° − ∠PBC -----(I)

   Also,

   âˆ ACB ∠QCB = 180°[ Linear pairs of angles ]

   âˆ ACB = 180° − ∠QCB -----(II)

   From (I) and (II)

   âˆ ABC > ∠ACB

   Hence,

   AC > AB as sides opposite to the larger angle is always larger.

3.    In Fig. 7.49, ∠B < ∠A and ∠C < ∠D. Show that AD < BC.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q3

solution :

   Given,

   âˆ B < ∠A and ∠C < ∠D.

   Find,

   AD < BC

   In the Fig.,

   âˆ B < ∠A[ Given ]

   AO < BO -----(I)

   âˆ C < ∠D[ Given ]

   OD < OC -----(II)

   From (I) and (II)

   AO + OD < BO + OC

   AD ∠ BC

4.    AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD(see Fig. 7.50). Show that ∠A > ∠C and ∠B > ∠D.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.4-Q3

solution :

   Given,

   AB and CD are respectively the smallest and longest side of a quadrilateral ABCD.

   Find,

   âˆ A > ∠C and ∠B > ∠D.

   Contruction,

   Join AC and DB.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.4-Q4-solution

   In â–µABC,

   AB < BC[ Given AB is smallest line ]

   âˆ ACB < ∠BAC -----(I)[ Angle opposite to longer side is greater ]

   In â–µACD,

   AD < DC[ Given CD is longest line ]

   âˆ ACD < ∠DAC -----(II)[ Angle opposite to longer side is greater ]

   Adding (I) and (II), we get

   âˆ ACB + ∠ACD < ∠BAC + ∠DAC

   â‡’ ∠BCD < ∠BAD

   SO, ∠A > ∠C

   In â–µABD,

   AB < AD[ Given AB is smallest line ]

   âˆ ADB < ∠ABD -----(III)[ Angle opposite to longer side is greater ]

   In â–µBCD,

   BD < DC[ Given CD is longest line ]

   âˆ BDC < ∠DBC -----(IV)[ Angle opposite to longer side is greater ]

   Adding (III) and (IV), we get

   âˆ ADB + ∠BDC < ∠ABD + ∠DBC

   â‡’ ∠ADC < ∠ABC

   SO, ∠B > ∠D

5.    In Fig. 751, PR > PQ and Ps bisects ∠QPR. Prove that ∠PSR > ∠PSQ.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q5

solution :

   Given,

   PR > PQ and PS bisect ∠QPR

   Find,

   âˆ PSR > ∠PSQ

   In â–µPQR,

   PR > PQ[ Given ]

   âˆ PQR > ∠PRQ -----(I)[ Angle opposit to longer side to greater ]

   PS is the bisector of ∠QPR

   So, ∠QPS = ∠RPS -----(II)

   In â–µPQS,

   âˆ PSR = ∠PQS + ∠QPS -----(III)[ The exterior angle of a triangle equals to the sum of opposite interior angles ]

   In â–µPSR,

   âˆ PSQ = ∠PRS + ∠RPS -----(IV)[ The exterior angle of a triangle equals to the sum of opposite interior angles ]

   Addind (I) and (II), we get

   âˆ PQR + ∠QPS > ∠PRQ + ∠RPS

   From (III) and (IV),

   âˆ PSR > ∠PSQ

6.    Show that of all line segments drawn from a given point not on it , the perpendicular line segment is the shortest.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q6-solution

   Given,

   l is a line and A is a point not lying on l. AB ⊥ l. C is any point on l other than B

   Find,

   AB < AC

   In â–µABC,

   âˆ B = 90°

   â‡’ ∠C is an acute angle.[ Angle sum property of a triangle ]

   â‡’ ∠B > ∠C

   â‡’ AC > AB[ Side opposite to greater angle is greater ]

   So, AB < AC.



0 Comments