Loading [MathJax]/jax/output/CommonHTML/jax.js

NCERT Solutions for Class 9 Math Chapter 7.3 Triangles

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3




1.    â–µABC and â–µDBC are two isosceles triangle on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that
(i) ▵ABD≅▵ACD
(ii) ▵ABP≅▵ACP
(iii) AP bisects ∠A as well as ∠D.
(iv) AP is the perpendicular bisector of BC.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q1

solution :

   Given,

   â–µABC and â–µDBC are isosceles triangle.

   Find,

   (i) â–µABD≅▵ACD

   (ii) â–µABP≅▵ACP

   (iii) AP bisects ∠A as well as ∠D.

   (iv) AP is the perpendicular bisector of BC.

   In â–µABD and â–µACD,

   AB = AC[ Given ]

   BD = CD[ Given ]

   AD = AD[ Common ]

   (i) â–µABD≅▵ACD[ Rule SSS ]

   âˆ BAD = ∠CAD -----(I)[ CPCT ]

   Now,

   In â–µABP and â–µACP,

   AB = AC[ Given ]

   âˆ BAP = ∠CAP[ From (I) ]

   AP = AP[ Common ]

   (ii) â–µABP≅▵ACP[ Rule SAS ]

   BP = CP -----(II)[ CPCT ]

   Similarly,

   In â–µBDP and â–µCDP,

   BD = CD[ Given ]

   DP = DP[ Common ]

   BP = CP[ From (II) ]

   â–µBDP≅▵CDP[ Rule SSS ]

   âˆ BDP = ∠CDP -----(III)[ CPCT ]

   From (I) and (III),

   we say,

   (iii) AP bisects ∠A as well as ∠D.

   âˆ BPD + ∠CPD = 180°[ Linear pair of angles ]

   â‡’ ∠BPD + ∠BPD = 180°[ From (III) ]

   â‡’ 2 ∠BPD = 180°

   â‡’ ∠BPD = 180°2

   â‡’ ∠BPD = 90°

   As well as ∠CPD = 90°

   From (II),

   we say,

   (iv) AP is the perpendicular bisector of BC.

2.    AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC
(ii) AD bisects ∠A.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q2-solution

   Given,

   AD ⊥ BC and AB = BC

   Find,

   (i) AD bisects BC

   (ii) AD bisects ∠A

   In â–µADB and â–µADC

   AB = AC[ Given ]

   AD = AD[ Common ]

   âˆ ADB = ∠ADC[ Given 90° ]

   â–µADB≅▵ADC[ Rule RHS ]

   AD = CD[ CPCT ]

   we say,

   (i) AD bisects BC

   âˆ BAD = ∠CAD[ CPCT ]

   we say,

   (ii) AD bisects ∠A.

3.    Two sides AB and BC median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of â–µPQR (see Fig. 7.40). Show that:
(i) ▵ABM≅▵PQN
(ii) ▵ABC≅▵PQR

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q3 NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q3

solution :

   Given,

   AB = PQ, BC = QR, AM = PN, BC median AM and QR median PN.

   Find,

   (i) â–µABM≅▵PQN

   (ii) â–µABC≅▵PQR

   In Fig.,

   BC = QR

   â‡’12BC=BM[ BC median AM ]

   â‡’12QR=QN[ QR median PN ]

   we say,

   BM = QN -----(I)

   In â–µABM and â–µPQN

   AB = PQ[ Given ]

   AM = PN[ Given ]

   BM = QN[ From (I) ]

   (i) â–µABM≅▵PQN[ Rule SSS ]

   âˆ ABM = ∠PQN -----(II)[ CPCT ]

   In â–µABC and â–µPQR

   AB = PQ[ Given ]

   âˆ ABC = ∠PQR[ From (II) ]

   BC = QR[ Given ]

   (ii) â–µABC≅▵PQR[ Rule SAS ]

4.    BE and CF are two equal altitude of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q4-solution

   Given,

   BE ⊥ AC, FC ⊥ AB and BE = FC

   Find,

   AB = AC

   In â–µBEC and â–µCFB

   âˆ BEC = ∠CFB[ Given 90° ]

   BE = CF [ Given ]

   BC = BC [ Common ]

   â–µBEC≅▵CFB[ Rule RHS ]

   âˆ B = ∠C[ CPCT ]

   AB = AC[ sides opposite to the equal angles ]

   So, we say that

   the triangle ABC is isosceles.

5.    ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠B = ∠C.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.3-Q5-solution

   Given,

   AB = AC and AP ⊥ BC

   Find,

   âˆ B = ∠C

   In â–µAPB and â–µAPC

   AP = AP[ Common ]

   âˆ APB = ∠APC[ Given 90° ]

   AB = AC[ Given ]

   â–µAPB≅▵APC[ Rule RHS ]

   âˆ B = ∠C[ CPCT ]



0 Comments