Loading [MathJax]/jax/output/CommonHTML/jax.js

NCERT Solutions for Class 9 Math Chapter 7.1 Triangles

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1




1.    In quadrilateral ABCD, AC = AD and AB bisects ∠A (see Fig. 7.16). Show â–µABC≅▵ABD. what can you say about BC and BD?

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q1

solution :

   Given,

   AC = AD and AB bisect ∠A.

   Find,

   â–µABC≅▵ABD

   BC and BD

   In the Fig,

   AB bisect ∠A[ Given ]

   â‡’∠BAC=∠BAD

   Now,

   In â–µABC and â–µABD,

   AC = AD[ Given ]

   âˆ CAB = ∠DAB[ Given ]

   AB = AB[ Common ]

   So,

   â–µABC≅▵ABD[ SAS rule ]

   Then,

   BC = BD[ CPCT ]

   I say about BC and BD is equal.

2.    ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (see Fig. 7.17). Prove that
(i)  â–µABD≅▵BAC
(ii)  BD = AC
(iii)  âˆ ABD = ∠BAC.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q2

solution :

   Given,

   AD = BC and ∠DAB = ∠BAC,

   Find,

   (i)  â–µABD≅▵BAC
   (ii)  BD = AC
   (iii)  âˆ ABD = ∠BAC.

   Now,

   In â–µABD and â–µBAC,

   AD = BC[ Given ]

   âˆ DAB = ∠CBA[ Given ]

   AB = AB[ Common ]

   So,

   (i) â–µABD≅▵BAC[ SAS rule ]

   (ii) BD = AC[ CPCT ]

   (iii) ∠ABD = ∠BAC[ CPCT ]

3.    AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q3

solution :

   Given,

   AD = BC and ∠CBO = ∠DAO.

   Find,

   CD bisect AB,

   In the Fig,

   BC and AD are perpendicular AB.

   We say,

   BC ∣∣ AD

   CD is a transversal line.

   âˆ BCD = ∠ADC-----(I)[ Alternate interior angles ]

   Now,

   In â–µCBO and â–µDAO,

   âˆ BCD = ∠ADO[ From (I) ]

   BC = AD[ Given ]

   âˆ CBO = ∠DAO[ Given ]

   so,

   â–µCBO≅▵DAO[ ASA rule ]

   Then,

   BO = AO[ CPCT ]

   CO = DO[ CPCT ]

   Now,

   I say that CD bisects AB.

4.    l and m are two parrel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that â–µABC≅▵CDA.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q4

solution :

   Given,

   l ∣∣ m and p ∣∣ q.

   Find,

   â–µABC≅▵CDA

   In the Fig,

   l ∣∣ m and AC is a transversal line.

   âˆ DAC = ∠BCA-----(I)[ Alternate interior angles ]

   âˆ BAC = ∠DCA-----(II)[ Alternate interior angles ]

   Now,

   In â–µABC and â–µCDA,

   âˆ BAC = ∠DCA[ From (I) ]

   AC = AC[ Common ]

   âˆ BCA = ∠DAC[ From (II) ]

   So,

   â–µABC≅▵CDA[ ASA rule ]



5.    Line l is the bisector of an angle ∠A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠A (see Fig. 7.20). Show that:
(i)  â–µAPB≅▵AQB
(ii)  BP = BQ or B is equidistant from the arms of ∠A.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q5

solution :

   Given,

   l bisect ∠A and BP and BQ are perpendiculars from B to the arms of ∠A.

   Find,

   (i) â–µAPB≅▵AQB

   (ii) BP = BQ or B is equidistant from the arms of ∠A.

   In the Fig,

   l bisect ∠A[ Given ]

   âˆ BAQ = ∠BAP-----(I)

   Now,

   In â–µAPB and â–µAQB,

   âˆ P = ∠Q[ 90° Given ]

   âˆ BAP = ∠BAQ[ From (I) ]

   AB = AB[ Common ]

   So,

   (i) â–µAPB≅▵AQB[ AAS rule ]

   Now,

   (ii) BP = BQ[ CPCT ]

   So,

   It can be said the point B is equidistant from the arms of A.

6.    In Fig. 7.21, AC = AE, AB = AD and ∠BAD = ∠EAC. Show that BC = DE.

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q6

solution :

   Given,

   AC = AE, AB = AD and ∠BAD = ∠EAC.

   Find,

   BC = DE

   In the Fig,

   âˆ BAD = ∠EAC[ Given ]

   Add ∠DAC both side,

   âˆ BAD + ∠DAC = ∠EAC + ∠DAC

   â‡’ ∠BAC = ∠EAD-----(I)

   Now,

   In â–µABC and â–µADE,

   AB = AD[ Given ]

   âˆ BAC = ∠EAD[ From (I) ]

   AC = AE[ Given ]

   So,

   â–µABC≅▵ADE[ SAS rule ]

   Now,

   BC = DE[ CPCT ]

7.    AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that ∠BAD = ∠ABE and ∠EPA = ∠DPB (see Fig. 7.22). Show that
(i)  â–µDAP≅▵EBP
(ii)  AD = BE

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q7

solution :

   Given,

   AP = BP, ∠BAD = ∠ABE and ∠EPA = ∠DPB.

   Find,

   (i) â–µDAP≅▵EBP

   (ii) AD = BE

   In the Fig,

   âˆ EPA = ∠DPB[ Given ]

   Add ∠EPD both side.

   âˆ EPA + ∠EPB = ∠DPB + ∠EPD

   â‡’ ∠APD = ∠EPB-----(I)

   Now,

   In  â–µDAP and â–µEBP,

   âˆ DAP = ∠EBP[ Given ]

   AP = BP[ Given ]

   âˆ APD = ∠EPB[ From (I) ]

   So,

   â–µDAP≅▵FPB[ ASA rule ]

   Now,

   AD = BE[ CPCT ]

8.    In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. point D is joint B (see Fig. 7.23). Show that:
(i)  â–µAMC≅▵BMD
(ii)  âˆ DBC is a right angle.
(iii)  â–µDBC≅▵ACB
(iv)  CM =12AB

NCERT-Solutions-for-Class-9-Maths-Chapter-7-Triangles-Ex-7.1-Q8

solution :

   Given,

   â–µABC is right angled triangle, ∠C = 90°, AM = BM and DM = CM.

   Find,

   (i)  â–µAMC≅▵BMD

   (ii)  âˆ DBC is a right angle.

   (iii)  â–µDBC≅▵ACB

   (iv)  CM =12AB

   In â–µAMC and â–µBMD,

   AM = BM[ Given ]

   âˆ AMC = ∠BMD[ Vertically opposit angles ]



   CM = DM[ Given ]

   So,

   (i) â–µAMC≅▵BMD[ SAS rule ]

   âˆ ACM = ∠BDC[ CPCT ]

   AC = BD-----(I)[ CPCT ]

   Now,

   âˆ ACD = ∠BDC[ Alternate interior angles ]

   So,

   We say,

   AC ∣∣ DB

   In the Fig.

   âˆ DBC + ∠ACB = 180°[ Co-interior angles ]

   â‡’∠DBC+90°=180°[ Given ∠C = 90° ]

   â‡’∠DBC=180°-90°

   â‡’∠DBC=90°

   (ii) ∠DBC is a right angle.

   Now,

   In â–µDBC and â–µACB,

   BC = BC[ Common ]

   âˆ DBC = ∠ACB[ right angles ]

   DB = AC[ From (I) ]

   So,

   (iii) â–µDBC≅▵ACB[ SAS rule ]

   DC = AB[ CPCT ]

   Now,

   DM = CM[ Given ]

   So,

   DC = AB

   â‡’ DM + CM = AB

   â‡’ CM + CM = AB

   â‡’ 2 CM = AB

   (iv) CM=12AB



0 Comments