Processing math: 100%

NCERT Solutions for Class 9 Math Chapter 6.3 Lines and Angles

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3



1.    In Fig. 6.39, sides QP and RQ of â–µPQR are produced to points S and T respectively. If ∠SPR=135° and ∠PQT=110°, find ∠PRQ.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q1

solution :

   Given,

   âˆ SPR=135° and ∠PQT=110°

   Find,

   âˆ PRQ=?

   In the Fig,

   Side QP and RQ of â–µPQR are produced to points S and T respectively.

   âˆ SPR+∠QPR=180°[ Linear pair of angels ]

   â‡’135°+∠QPR=180°[∴∠SPR=135°]

   â‡’∠QPR=180°-135°

   â‡’∠QPR=45°

   Similarly,

   âˆ PQT+∠PQR=180°[ Linear pair of angels ]

   â‡’110°+∠PQR=180°[∴∠PQT=110°]

   â‡’∠PQR=180°-110°

   â‡’∠PQR=70°

   Now,

   In â–µPQR,

   âˆ PRQ+∠PQR+∠QPR=180°[ Angle sum property of a traingle ]

   â‡’∠PRQ+70°+45°=180°[∴∠PQR=70° and ∠QPR=45°]

   â‡’∠PRQ+115°=180°

   â‡’∠PRQ=180°-115°

   â‡’∠PRQ=65°

   So,

   The value of ∠PRQ is 65°.

2.    In Fig. 6.40, ∠X=62°, ∠XYZ=54°. If YO and ZO are the bisectirs of ∠XYZ and ∠XZY respectively of â–µXYZ, find ∠OZY and ∠YOZ.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q2

solution :

   Given,

   âˆ X=62°, ∠XYZ=54° and
YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of ▵XYZ.

   Find,

   âˆ OZY=? and ∠YOZ=?

   In â–µXYZ,

   âˆ X+∠XYZ+∠XZY=180°[ Angle sum property of a traingle ]

   â‡’62°+54°+∠XZY=180°[∴∠X=62° and ∠XYZ=54°]

   â‡’116°+∠XZY=180°

   â‡’∠XZY=180°-116°

   â‡’∠XZY=64°

   Now,

   âˆ OZY=12∠XZY[Given]

   â‡’∠OZY=12×64°[∴∠XZY=64°]

   â‡’∠OZY=32°

   Then,

   âˆ OYZ=12∠XYZ[Given]

   â‡’∠OYZ=12×54°[∴∠XYZ=54°]

   â‡’∠OZY=27°

   Now,

   In â–µOZY,

   âˆ OZY+∠ZYO+∠YOZ=180°[ Angle sum property of a traingle ]

   â‡’32°+27°+∠YOZ=180°[∴∠OZY=32° and ∠ZYO=27°]

   â‡’59°+∠YOZ=180°

   â‡’∠YOZ=180°-59°

   â‡’YOZ=121°

   So,

   The value of ∠OZY=27° and ∠YOZ=121°.

3.    In Fig. 6.41, if AB ∣∣ DE, ∠BAC=35° and ∠CDE=53°, find ∠DCE.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q3

solution :

   Given,

   AB ∣∣ DE, ∠BAC=35° and CDE=53°.

   Find,

   âˆ DCE=?

   In the Fig,

   âˆ BAC=∠CED[Alternate interior angles ]

   â‡’∠CED=35°[∴∠BAC=35°]

   Now,

   In â–µCDE,

   âˆ CDE+∠CED+∠DCE=180°[ Angle sum property of a traingle ]

   â‡’53°+35°+∠DCE=180°[∴∠CDE=53° and ∠CED=35°]

   â‡’88°+∠DCE=180°

   â‡’∠DCE=180°-88°

   â‡’∠DCE=92°

   So,

   The value of ∠DCE is 92°.

4.    In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠PRT=40°,∠RPT=95° and ∠TSQ=75°, find ∠SQT.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q4

solution :

   Given,

   âˆ PRT=40°, ∠RPT=95° and ∠TSQ=75°

   Find,

   âˆ SQT=?

   In â–µPRT,

   âˆ PTR+∠TRP+∠RPT=180°[ Angle sum property of a traingle ]

   â‡’∠PTR+40°+95°=180°[∴∠TRP=40° and ∠RPT=95°]

   â‡’PTR+135°=180°

   â‡’∠PTR=180°-135°

   â‡’PTR=45°

   In the Fig.

   âˆ PTR=∠QTS[ Vertically opposit angles ]

   âˆ QTS=45°[∴∠PTR=45°]

   Now,

   In â–µQTS,

   âˆ SQT+∠TSQ+∠QTS=180°[ Angle sum property of a traingle ]

   â‡’∠SQT+75°+45°=180°[∴∠TSQ=75° and ∠QTS=45°]

   â‡’∠SQT+120°=180°

   â‡’∠SQT=180°-120°

   â‡’∠SQT=60°

   So,

   The value of ∠SQT is 60°.

5.    In Fig. 6.43, if PQ⊥PS, PQ ∣∣ SR, ∠SQR=28° and ∠QRT=65°, then find the value of x and y.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q5

solution :

   Given,

   PQ⊥PS, PQ ∣∣ SR, ∠SQR=28° and ∠QRT=65°.

   Find,

   x=? and y=?

   In the Fig.

   âˆ QRS+∠QRT=180°[ Linear pair of angels ]

   â‡’∠QRS+65°=180°[∴∠QRT=65°]

   â‡’∠QRS=180°-65°

   â‡’∠QRS=115°

   Now,

   In â–µQRS,

   âˆ QSR+∠SQR+∠QRS=180°[ Angle sum property of a traingle ]

   â‡’∠QSR+28°+115°=180°[∴∠SQR=28° and ∠QRS=115°]

   â‡’∠QSR+143°=180°

   â‡’∠QSR=180°-143°

   â‡’∠QSR=37°

   Then,

   PQ ∣∣ SR and PS is transversal.

   âˆ QPS+∠PSR=180°[ Interior angles on the same side of the transversal ]

   â‡’∠PSR+90°=180°[∴∠QPS=90°]

   â‡’∠PSR=180°-90°

   â‡’∠PSR=90°

   â‡’∠PSR=∠PSQ+∠QSR[ From Fig. ]

   â‡’90°=y+37°[ From Fig. and ∠QSR=37° ]

   â‡’y=90°-37°

   â‡’y=53°

   Now,

   In â–µPQS,

   âˆ QSP+∠SPQ+∠PQS=180°[ Angle sum property of a traingle ]

   â‡’53°+90°+∠PQS=180°[∴∠QSP=53° and ∠SPQ=90°]

   â‡’143°+∠PQS=180°

   â‡’∠PQS=180°-143°

   â‡’∠PQS=37°

   â‡’x=37°[∴∠PQS=x]

   So,

   The value of x is 37° and y is 53°.

6.    In Fig. 6.44, the side QR of â–µPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR=12∠QPR.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.3-Q6

solution :

   Given,

   âˆ PQR bisect QT and ∠PRS bisect RT.

   Find,

   âˆ QTR=12∠QPR

   In â–µPQR,

   âˆ PRS=∠QPR+∠PQR[ Angle Sum Property of a Triangle ]

   â‡’∠PRS-∠PQR=∠QPR

   â‡’∠QPR=∠PRS-∠PQR-----(I)

   Similarly,

   In â–µQTR,

   âˆ TRS=∠QTR+∠TQR[ Angle Sum Property of a Triangle ]

   â‡’∠TRS-∠TQR=∠QTR

   â‡’∠QTR=∠TRS-∠TQR-----(II)

   Now,

   âˆ PRS=∠PRT+∠TRS[ From Fig. ]

   â‡’∠PRS=∠TRS+∠TRS[ From Fig. ∠PRT=∠TRS ]

   â‡’∠PRS=2∠TRS

   â‡’∠TRS=12∠PRS-----(III)

   Similarly,

   âˆ PQR=∠PQT+∠TQR[ From Fig. ]

   â‡’∠PQR=∠TQR+∠TQR[ From Fig. ∠PQT=∠TQR ]

   â‡’∠PQR=2∠TQR

   â‡’∠TQR=12∠PQR-----(IV)

   Now,

   From (II), (III) and (IV).

   âˆ QTR=12∠PRS-12∠PQR

   â‡’∠QTR=12(∠PRS-∠PQR)-----(V)

   From (I) and (V).

   â‡’∠QTR=12∠QPR

   Proved.



0 Comments