Processing math: 100%

NCERT Solutions for Class 9 Math Chapter 2.5 POLYNOMIALS ALL SOLUTION

CLASS :- 9, EX :- 2.5



1.    Use suitable identities to find the following products:

( i )     (x+4)(x+10)

( ii )     (x+8)(x-10)

( iii )     (3x+4)(3x-5)

( iv )     (y2+32)(y2-32)

( v )     (3-2x)(3+2x)

solution :

( i )     (x+4)(x+10)

    Here we can use identity IV :

     (x+a)(x+b)=x2+(a+b)x+ab

     (x+4)(x+10)

     =x2+(4+10)x+4×10

     =x2+14x+40

( ii )     (x+8)(x-10)

    Here we can use identity IV :

     (x+a)(x+b)=x2+(a+b)x+ab

     (x+8)(x-10)

     =x2+(8+(-10))x+8×(-10)

     =x2-2x-80

( iii )     (3x+4)(3x-5)

    Here we can use identity IV :

     (x+a)(x+b)=x2+(a+b)x+ab

     (3x+4)(3x-5)

     =(3x)2+(4+(-5))3x+4×(-5)

     =9x2-3x-20

( iv )     (y2+32)(y2-32)

    Here we can use identity III :

     (x+a)(x-a)=x2-a2

     (y2+32)(y2-32)

     =(y2)2-(32)2

     =y4-94

( v )     (3-2x)(3+2x)

    Here we can use identity III :

     (x+a)(x-a)=x2-a2

     (3-2x)(3+2x)

     =32-(2x)2

     =9-4x2

2.    Evaluate the following products without multiplying directly:

( i )     103×107

( ii )     95×96

( iii )     104×96

solution :

( i )     103×107

     103×107=(100+3)(100+7)

     =(100)2+(3+7)(100)+(3×7) using identity IV

     =10000+1000+21

     =11021

( ii )     95×96

     95×96=(100+(-5))(100+(-4))

     =(100)2+((-5)+(-4))  (100)+((-5)×(-4))

    using identity IV

     =10000+(-900)+20

     =10000-900+20

     =9120

( iii )     104×96

     104×96=(100+4)(100-4)

     =(100)2-42 using identity III

     =10000-16

     =9984

3.    Factorise the following using appropriate identities:

( i )     9x2+6xy+y2

( ii )     4y2-4y+1

( iii )     x2-y2100

solution :

( i )     9x2+6xy+y2

    Here you can see that

     9x2+6xy+y2

     9x2=(3x)2,  y2=(y)2, 6xy=2(3x)(y)

    Comparing the given expression with  x2+2xy+y2, we observe that  x=3x and  y=y.

    Using Identity I, we get

     9x2+6xy+y2  =(3x+y)2

     =(3x+y)(3x+y)

( ii )     4y2-4y+1

    Here you can see that

     4y2-4y+1

     4y2=(2y)2,  1=(1)2,  4y=2(2y)(1)

    Comparing the given expression with  x2-2xy+y2, we observe that  x=2y and  y=1.

    Using Identity II, we get

     4y2-4y+1  =(2y-1)2

     =(2y-1)(2y-1)

( iii )     x2-y2100

    Here you can see that

     x2-y2100

     x2=(x)2,  y2100=(y10)2,

    Comparing the given expression with  x2-y2, we observe that  x=x and  y=y10.

    Using Identity III, we get

     x2-y2100  =(x+y10)(x-y10)

4.    Expand each of the following, using suitable identities:

( i )     (x+2y+4z)2

( ii )     (2x-y+z)2

( iii )     (-2x+3y+2z)2

( iv )     (3a-7b-c)2

( v )     (-2x+5y-3z)2

( vi )     [14x-12b+1]

solution :

( i )     (x+2y+4z)2

    Comparing the given expression with  (x+2y+4z)2, we find that

     x=x,  y=2y and  z=4z.

    Therefore, using Identity V, we have

     (x+2y+4z)2

     =(x)2+(2y)2+(4z)2  +2(x)(2y)+2(2y)(4z)+2(4z)(x)

     =x2+4y2+16z2  +4xy+16yz+8xz

( ii )     (2x-y+z)2

    Comparing the given expression with  (2x-y+z)2, we find that

     x=2x,  y=-y and  z=z.

    Therefore, using Identity V, we have

     (2x-y+z)2

     =(2x)2+(-y)2+(z)2  +2(2x)(-y)+2(-y)(z)+2(z)(2x)

     =4x2+y2+z2  -4xy-2yz+4xz

( iii )     (-2x+3y+2z)2

    Comparing the given expression with  (-2x+3y+2z)2, we find that

     x=-2x,  y=3y and  z=2z.

    Therefore, using Identity V, we have

     (-2x+3y+2z)2

     =(-2x)2+(3y)2+(2z)2  +2(-2x)(3y)+2(3y)(2z)+2(2z)(-2x)

     =4x2+9y2+4z2  -12xy+12yz-8xz

( iv )     (3a-7b-c)2

    Comparing the given expression with  (3a-7b-c)2, we find that

     x=3a,  y=-7b and  z=-c.

    Therefore, using Identity V, we have

     (3a-7b-c)2

     =(3a)2+(-7b)2+(-c)2  +2(3a)(-7b)+2(-7b)(-c)+2(-c)(3a)

     =9a2+49b2+c2  -42ab+14bc-6ac

( v )     (-2x+5y-3z)2

    Comparing the given expression with  (-2x+5y-3z)2, we find that

     x=-2x,  y=5y and  z=-3z.

    Therefore, using Identity V, we have

     (-2x+5y-3z)2

     =(-2x)2+(5y)2+(-3z)2  +2(-2x)(5y)+2(5y)(-3z)+2(-3z)(-2x)

     =4x2+25y2+9z2  -20xy-30yz+12xz

( vi )     [14x-12b+1]

    Comparing the given expression with  [14a-12b+1]2, we find that

     x=14a,  y=-12b and  z=1.

    Therefore, using Identity V, we have

     [14a-12b+1]2

     =(14a)2+(-12b)2+(1)2  +2(14a)(-12b)+2(-12b)(1)+2(1)(14a)

     =116a2+14b2+1  -14ab-b+12a

5.    Factorise:

( i )     4x2+9y2+16z2  +12xy-24yz-16xz

( ii )     2x2+y2+8z2  -2√2xy-4√2yz-8xz

solution :

( i )     4x2+9y2+16z2  +12xy-24yz-16xz

    We have  4x2+9y2+16z2  +12xy-24yz-16xz

     =(2x)2+(3y)2+(-4z)2  +2(2x)(3y)+2(3y)(-4z)+2(-4z)(2x)

    â‡’  [2x+3y+(-4z)]2 ( Using Identity V )

    â‡’  (2x+3y-4z)2  =(2x+3y-4z)  (2x+3y-4z)

( ii )     2x2+y2+8z2  -2√2xy+4√2yz-8xz

    We have  2x2+y2+8z2  -2√2xy+4√2yz-8xz

     =(-√2x)2+(y)2+(2√2z)2  +2(-√2x)(y)+2(y)(2√2z)+2(2√2z)(-√2x)

     [(-√2x)+y+2√2z]2 ( Using Identity V )

     (-√2x+y=2√2z)2  =(-√2x+y=2√2z)  (-√2x+y=2√2z)

6.    Write the following cubes in expanded form:

( i )     (2x+1)3

( ii )     (2a-3b)3

( iii )     [32x+1]3

( iv )     [x+23y]3

solution :

( i )     (2x+1)3

     Comparing the given expression with  (x+y)3, we find that

     x=2xandy=1.

    So, using Identity VI, we have:

     (2x+1)3  =(2x)3+(1)3+3(2x)(1)(2x+1)

     8x3+1+6x(2x+1)

     8x3+1+12x2+6x

     8x3+12x2+6x+1

( ii )     (2a-3b)3

     Comparing the given expression with  (x+y)3, we find that

     x=2aandy=3b.

    So, using Identity VII, we have:

     (2a-3b)3  =(2a)3-(3b)3-3(2a)(3b)(2a-3b)

     8a3-27b3-18ab(2a-3b)

     8a3-27b3-36a2b+54ab2

( iii )     [32x+1]3

     Comparing the given expression with  (x+y)3, we find that

     x=32xandy=1.

    So, using Identity VI, we have:

     [32x+1]3  =(32x)3+(1)3+3(32x)(1)(32x+1)

     278x3+1+92x(32x+1)

     278x3+1+274x2+92x

     278x3+274x2+92x+1

( iv )     [x-23y]3

     Comparing the given expression with  (x+y)3, we find that

     x=xandy=23y.

    So, using Identity VII, we have:

     [x-23y]3  =(x)3-(23y)3-3(x)(23y)(x-23y)

     x3-827y3-2xy(x-23y)

     x3-827y3-2x2y+43xy2

7.    Evaluate the following using suitable identities:

( i )     (99)3

( ii )     (102)3

( iii )     (998)3

solution :

( i )     (99)3

We have

 (99)3=(100-1)3

 =(100)3-(1)3-3(100)(1)(100-1)  ( Using identity VII )

=1000000-1-300(100-1)

=999999-30000+300

=969999+300

=970299

( ii )     (102)3

We have

 (102)3=(100+2)3

 =(100)3+(2)3+3(100)(2)(100+2)  ( Using identity VI )

=1000000+8+600(100+2)

=1000008+60000+1200

=1060008+1200

=1061208

( iii )     (998)3

We have

 (998)3=(1000-2)3

 =(1000)3-(2)3-3(1000)(2)(1000-2)   ( Using identity VII )

=1000000000-8-6000(1000-2)

=999999992-6000000+12000

=993999992+12000

=994011992

8.    Factorise each of the following:

( i )     8a3+b3+12a2b+6ab2

( ii )     8a3-b3-12a2b+6ab2

( iii )     27-125a3-135a+225a2

( iv )     64a3-27b3-144a2b+108ab2

( v )     27p3-1216-92p2+14p

solution :

( i )     8a3+b3+12a2b+6ab2

    The given expression can be written as

    (2a)3+(b)3+3(4a2)(b)+3(2a)(b2)

    (2a)3+(b)3+3(2a)2(b)+3(2a)(b)2

    (2a+b)3       ( Using identity VI )

     (2a+b)  (2a+b)  (2a+b)

( ii )     8a3-b3-12a2b+6ab2

    The given expression can be written as

    (2a)3-(b)3-3(4a2)(b)+3(2a)(b2)

    (2a)3-(b)3-3(2a)(b)(2a-b)

    (2a-b)3       ( Using identity VII )

     (2a-b)  (2a-b)  (2a-b)

( iii )     27-125a3-135a+225a2

    The given expression can be written as

    (3)3-(5a)3-3(32)(5a)+3(3)((5a)2)

    (3)3-(5a)3-3(3)(5a)(3-5a)

    (35a)3       ( Using identity VII )

     (3-5a)  (3-5a)  (3-5a)

( iv )     64a3-27b3-144a2b+108ab2

    The given expression can be written as

    (4a)3-(3b)3-3((4a)2)(3b)+3(4a)((3b)2)

    (4a)3-(3b)3-3(4a)(3b)(2a-3b)

    (4a-3b)3       ( Using identity VII )

     (4a-3b)  (4a-3b)  (4a-3b)

( v )     27p3-1216-92p2+14p

    The given expression can be written as

    (3p)3-(16)3-3((3p)2)(16)+3(3p)((16)2)

    (3p)3-(16)3-3(3p)(16)(3p-16)

    (3p-16)3       ( Using identity VII )

     (3p-16)  (3p-16)  (3p-16)

9.    Verify :

( i )     x3+y3=(x+y)  (x2-xy+y2)

( ii )     x3-y3=(x-y) (x2+xy+y2)

solution :

( i )     x3+y3=(x+y)  (x2-xy+y2)

    We know that,

    (x+y)3=x3+y3+3xy(x+y)

    â‡’x3+y3=(x+y)3-3xy(x+y)

    â‡’x3+y3=(x+y)[(x+y)2-3xy]   ( Taking (x+y) common )

    â‡’x3+y3=(x+y)[x2+y2+2xy-3xy]

    â‡’x3+y3=(x+y)(x2-xy+y2)

    Proved.

( ii )     x3-y3=(x-y) (x2+xy+y2)

    We know that,

    (x-y)3=x3-y3-3xy(x-y)

    â‡’x3-y3=(x-y)3+3xy(x-y)

    â‡’x3-y3=(x-y)[(x-y)2+3xy]   ( Taking (x-y) common )

    â‡’x3±y3=(x-y)[x2+y2-2xy+3xy]

    â‡’x3-y3=(x-y)(x2+xy+y2)

    Proved.

10.    Factorise each of the following:

( i )     27y3+125z3

( ii )     64m3-343n3

solution :

( i )     27y3+125z3

    The expression, 27y3+125z3 can be written as (3y)3+(5z)3

     27y3+125z3 =  (3y)3+(5z)3

    We know that,

    â‡’x3+y3=(x+y)(x2-xy+y2)

     27y3+125z3 =  (3y)3+(5z)3

    =(3y+5z)((3x)2-(3x)(5z)+(5z)2)

    =(3y+5z)(9y2-15yz+25z2)

( ii )     64m3-343n3

    The expression, 64m3-343n3 can be written as (4m)3-(7n)3

     64m3-343n3 =  (4m)3+(7n)3

    We know that,

    â‡’x3-y3=(x-y)(x2+xy+y2)

     64m3-343n3 =  (4m)3-(7n)3

    =(4m-7n)((4m)2+(4m)(7n)+(7n)2)

    =(4m-7n)(16m2+28mn+49n2)

11.    Factorise :  27x3+y3+z3-9xyz

solution :

    Factorise :  27x3+y3+z3-9xyz

    Here, we have

     27x3+y3+z3-9xyz

    (3x)3+(y)3+(z)3-3(3x)(y)(z)

    (3x+y+z) [(3x)2+(y)2+(z)2-(3x)(y)-(y)(z)-(z)(3x)]

    (3x+y+z) (9x2+y2+z2-3xy-yz-3xz)

12.    Verify that  x3+y3+z3-3xyz =12(x+y+z)  [(x-y)2+(y-z)2+(z-x)2]

solution :

    Verify that  x3+y3+z3-3xyz =12(x+y+z)  [(x-y)2+(y-z)2+(z-x)2]

    We know that,

    x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2-xy-yz-zx)

    â‡’ x3+y3+z3-3xyz  =12(x+y+z)  [2(x2+y2+z2-xy-yz-zx)]

    = 12(x+y+z) (2x2+2y2+2z2-2xy-2yz-2zx)

    = 12(x+y+z) [(x2+y2-2xy)(y2+z2-2yz)(z2+x2-2zx)]

    = x3+y3+z3-3xyz  =12(x+y+z)  [(x-y)2+(y-z)2+(z-x)2]

13.    If  x+y+z=0, show that  x3+y3+z3=3xyz.

solution :

    If  x+y+z=0, show that  x3+y3+z3=3xyz.

    We know that,

    x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2-xy-yz-zx)

    Now, according to the question, let  (x+y+z)=0,

    then, x3+y3+z3-3xyz= (0)(x2+y2+z2–xy–yz–xz)

    â‡’ x3+y3+z3–3xyz=0

    â‡’ x3+y3+z3=3xyz

14.    Without actually calculating the cubes, find the value of each of the following:

( i )     (-12)3+(7)3+(5)3

( ii )     (28)3+(-15)3+(-13)3

solution :

( i )     (-12)3+(7)3+(5)3

    Let a  =−12

    b=7

    c=5

    We know that if x+y+z=0, then x3+y3+z3=3xyz.

    Here, −12+7+5=0

    (−12)3+(7)3+(5)3=3xyz

    =3×(-12)×7×5

    =-1260

( ii )     (28)3+(-15)3+(-13)3

    Let a  =28

    b=-15

    c=-13

    We know that if x+y+z=0, then x3+y3+z3=3xyz.

    Here, 28+(-15)+(-13)=0

    (28)3+(-15)3+(-13)3=3xyz

    =3×(28)×(-15)×(-13)

    =16380

15.    Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

( i )     Area:25a2-35a+12

( ii )     Area:35y2-13y-12

solution :

( i )     Area:25a2-35a+12

    By splitting method:

    If we can find two numbers p and q such that,

    p+q=-35 and p q = 25 × 12 = 300

    then we can get the factor.

    So, let us look for the pair of factors of 300.

    Some are − 15 and − 20.

     of these pairs, − 15 and − 20 will giue us p + q = − 35.

    So,   25a2-35a+12  =25a2+[(-15)+(-20)]a+12

    = 25a2-15a-20a+12

    = 5a(5a-3)-4(5a-3)

    = (5a-4)(5a-3)

    = Possible expression for length =(5a–4)

    = Possible expression for breadth =(5a–3)

( ii )     Area:35y2-13y-12

    By splitting method:

    If we can find two numbers p and q such that,

    p+q=-13 and p q = 35 × − 12 = −420

    then we can get the factor.

    So, let us look for the pair of factors of − 420.

    Some are − 15 and 28.

     of these pairs, − 15 and 28 will giue us p + q = − 13.

    So,   35y2-13y-12  =35y2+[(-15)+28]y-12

    = 35y2-15y+28y-12

    = 5y(7y-3)-4(7y-3)

    = (5y-4)(7y-3)

    = Possible expression for length =(5y–4)

    = Possible expression for breadth =(7y–3)

16.    What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

( i )     Volume:3x2-12x

( ii )     Volume:12ky2+8ky-20k

solution :

( i )     Volume:3x2-12x

    3x2–12x can be written as 3x(x–4)

    Taking 3x common both the terms.

    Possible expression for length = 3

    Possible expression for breadth = x

    Possible expression for height = (x – 4)

( ii )     Volume:12ky2+8ky-20k

    12ky2+8ky–20k can be written as 4k(3y2+2y–5)

    Taking 4k common both the terms.

    Here, 4k(3y2+2y-5)

    By splitting method:

    4k(3y2+2y-5) is written as 4k(3y2+5y-3y-5)

    4k[y(3y+5)-1(3y+5)]

    4k[(3y+5)(y-1)]

    4k(3y+5)(y-1)

    Possible expression for length = 4k

    Possible expression for breadth = ( 3y + 5 )

    Possible expression for height = (y – 1)



0 Comments