
1. Use suitable identities to find the following products:
( i ) (x+4)(x+10)
( ii ) (x+8)(x-10)
( iii ) (3x+4)(3x-5)
( iv ) (y2+32)(y2-32)
( v ) (3-2x)(3+2x)
solution :
( i ) (x+4)(x+10)
Here we can use identity IV :
(x+a)(x+b)=x2+(a+b)x+ab
(x+4)(x+10)
=x2+(4+10)x+4×10
=x2+14x+40
( ii ) (x+8)(x-10)
Here we can use identity IV :
(x+a)(x+b)=x2+(a+b)x+ab
(x+8)(x-10)
=x2+(8+(-10))x+8×(-10)
=x2-2x-80
( iii ) (3x+4)(3x-5)
Here we can use identity IV :
(x+a)(x+b)=x2+(a+b)x+ab
(3x+4)(3x-5)
=(3x)2+(4+(-5))3x+4×(-5)
=9x2-3x-20
( iv ) (y2+32)(y2-32)
Here we can use identity III :
(x+a)(x-a)=x2-a2
(y2+32)(y2-32)
=(y2)2-(32)2
=y4-94
( v ) (3-2x)(3+2x)
Here we can use identity III :
(x+a)(x-a)=x2-a2
(3-2x)(3+2x)
=32-(2x)2
=9-4x2
2. Evaluate the following products without multiplying directly:
( i ) 103×107
( ii ) 95×96
( iii ) 104×96
solution :
( i ) 103×107
103×107=(100+3)(100+7)
=(100)2+(3+7)(100)+(3×7) using identity IV
=10000+1000+21
=11021
( ii ) 95×96
95×96=(100+(-5))(100+(-4))
=(100)2+((-5)+(-4)) (100)+((-5)×(-4))
using identity IV
=10000+(-900)+20
=10000-900+20
=9120
( iii ) 104×96
104×96=(100+4)(100-4)
=(100)2-42 using identity III
=10000-16
=9984
3. Factorise the following using appropriate identities:
( i ) 9x2+6xy+y2
( ii ) 4y2-4y+1
( iii ) x2-y2100
solution :
( i ) 9x2+6xy+y2
Here you can see that
9x2+6xy+y2
9x2=(3x)2, y2=(y)2, 6xy=2(3x)(y)
Comparing the given expression with x2+2xy+y2, we observe that x=3x and y=y.
Using Identity I, we get
9x2+6xy+y2 =(3x+y)2
=(3x+y)(3x+y)
( ii ) 4y2-4y+1
Here you can see that
4y2-4y+1
4y2=(2y)2, 1=(1)2, 4y=2(2y)(1)
Comparing the given expression with x2-2xy+y2, we observe that x=2y and y=1.
Using Identity II, we get
4y2-4y+1 =(2y-1)2
=(2y-1)(2y-1)
( iii ) x2-y2100
Here you can see that
x2-y2100
x2=(x)2, y2100=(y10)2,
Comparing the given expression with x2-y2, we observe that x=x and y=y10.
Using Identity III, we get
x2-y2100 =(x+y10)(x-y10)
4. Expand each of the following, using suitable identities:
( i ) (x+2y+4z)2
( ii ) (2x-y+z)2
( iii ) (-2x+3y+2z)2
( iv ) (3a-7b-c)2
( v ) (-2x+5y-3z)2
( vi ) [14x-12b+1]
solution :
( i ) (x+2y+4z)2
Comparing the given expression with (x+2y+4z)2, we find that
x=x, y=2y and z=4z.
Therefore, using Identity V, we have
(x+2y+4z)2
=(x)2+(2y)2+(4z)2 +2(x)(2y)+2(2y)(4z)+2(4z)(x)
=x2+4y2+16z2 +4xy+16yz+8xz
( ii ) (2x-y+z)2
Comparing the given expression with (2x-y+z)2, we find that
x=2x, y=-y and z=z.
Therefore, using Identity V, we have
(2x-y+z)2
=(2x)2+(-y)2+(z)2 +2(2x)(-y)+2(-y)(z)+2(z)(2x)
=4x2+y2+z2 -4xy-2yz+4xz
( iii ) (-2x+3y+2z)2
Comparing the given expression with (-2x+3y+2z)2, we find that
x=-2x, y=3y and z=2z.
Therefore, using Identity V, we have
(-2x+3y+2z)2
=(-2x)2+(3y)2+(2z)2 +2(-2x)(3y)+2(3y)(2z)+2(2z)(-2x)
=4x2+9y2+4z2 -12xy+12yz-8xz
( iv ) (3a-7b-c)2
Comparing the given expression with (3a-7b-c)2, we find that
x=3a, y=-7b and z=-c.
Therefore, using Identity V, we have
(3a-7b-c)2
=(3a)2+(-7b)2+(-c)2 +2(3a)(-7b)+2(-7b)(-c)+2(-c)(3a)
=9a2+49b2+c2 -42ab+14bc-6ac
( v ) (-2x+5y-3z)2
Comparing the given expression with (-2x+5y-3z)2, we find that
x=-2x, y=5y and z=-3z.
Therefore, using Identity V, we have
(-2x+5y-3z)2
=(-2x)2+(5y)2+(-3z)2 +2(-2x)(5y)+2(5y)(-3z)+2(-3z)(-2x)
=4x2+25y2+9z2 -20xy-30yz+12xz
( vi ) [14x-12b+1]
Comparing the given expression with [14a-12b+1]2, we find that
x=14a, y=-12b and z=1.
Therefore, using Identity V, we have
[14a-12b+1]2
=(14a)2+(-12b)2+(1)2 +2(14a)(-12b)+2(-12b)(1)+2(1)(14a)
=116a2+14b2+1 -14ab-b+12a
5. Factorise:
( i ) 4x2+9y2+16z2 +12xy-24yz-16xz
( ii ) 2x2+y2+8z2 -2√2xy-4√2yz-8xz
solution :
( i ) 4x2+9y2+16z2 +12xy-24yz-16xz
We have 4x2+9y2+16z2 +12xy-24yz-16xz
=(2x)2+(3y)2+(-4z)2 +2(2x)(3y)+2(3y)(-4z)+2(-4z)(2x)
⇒ [2x+3y+(-4z)]2 ( Using Identity V )
⇒ (2x+3y-4z)2 =(2x+3y-4z) (2x+3y-4z)
( ii ) 2x2+y2+8z2 -2√2xy+4√2yz-8xz
We have 2x2+y2+8z2 -2√2xy+4√2yz-8xz
=(-√2x)2+(y)2+(2√2z)2 +2(-√2x)(y)+2(y)(2√2z)+2(2√2z)(-√2x)
[(-√2x)+y+2√2z]2 ( Using Identity V )
(-√2x+y=2√2z)2 =(-√2x+y=2√2z) (-√2x+y=2√2z)
6. Write the following cubes in expanded form:
( i ) (2x+1)3
( ii ) (2a-3b)3
( iii ) [32x+1]3
( iv ) [x+23y]3
solution :
( i ) (2x+1)3
Comparing the given expression with (x+y)3, we find that
x=2xandy=1.
So, using Identity VI, we have:
(2x+1)3 =(2x)3+(1)3+3(2x)(1)(2x+1)
8x3+1+6x(2x+1)
8x3+1+12x2+6x
8x3+12x2+6x+1
( ii ) (2a-3b)3
Comparing the given expression with (x+y)3, we find that
x=2aandy=3b.
So, using Identity VII, we have:
(2a-3b)3 =(2a)3-(3b)3-3(2a)(3b)(2a-3b)
8a3-27b3-18ab(2a-3b)
8a3-27b3-36a2b+54ab2
( iii ) [32x+1]3
Comparing the given expression with (x+y)3, we find that
x=32xandy=1.
So, using Identity VI, we have:
[32x+1]3 =(32x)3+(1)3+3(32x)(1)(32x+1)
278x3+1+92x(32x+1)
278x3+1+274x2+92x
278x3+274x2+92x+1
( iv ) [x-23y]3
Comparing the given expression with (x+y)3, we find that
x=xandy=23y.
So, using Identity VII, we have:
[x-23y]3 =(x)3-(23y)3-3(x)(23y)(x-23y)
x3-827y3-2xy(x-23y)
x3-827y3-2x2y+43xy2
7. Evaluate the following using suitable identities:
( i ) (99)3
( ii ) (102)3
( iii ) (998)3
solution :
( i ) (99)3
We have
(99)3=(100-1)3
=(100)3-(1)3-3(100)(1)(100-1) ( Using identity VII )
=1000000-1-300(100-1)
=999999-30000+300
=969999+300
=970299
( ii ) (102)3
We have
(102)3=(100+2)3
=(100)3+(2)3+3(100)(2)(100+2) ( Using identity VI )
=1000000+8+600(100+2)
=1000008+60000+1200
=1060008+1200
=1061208
( iii ) (998)3
We have
(998)3=(1000-2)3
=(1000)3-(2)3-3(1000)(2)(1000-2) ( Using identity VII )
=1000000000-8-6000(1000-2)
=999999992-6000000+12000
=993999992+12000
=994011992
8. Factorise each of the following:
( i ) 8a3+b3+12a2b+6ab2
( ii ) 8a3-b3-12a2b+6ab2
( iii ) 27-125a3-135a+225a2
( iv ) 64a3-27b3-144a2b+108ab2
( v ) 27p3-1216-92p2+14p
solution :
( i ) 8a3+b3+12a2b+6ab2
The given expression can be written as
(2a)3+(b)3+3(4a2)(b)+3(2a)(b2)
(2a)3+(b)3+3(2a)2(b)+3(2a)(b)2
(2a+b)3 ( Using identity VI )
(2a+b) (2a+b) (2a+b)
( ii ) 8a3-b3-12a2b+6ab2
The given expression can be written as
(2a)3-(b)3-3(4a2)(b)+3(2a)(b2)
(2a)3-(b)3-3(2a)(b)(2a-b)
(2a-b)3 ( Using identity VII )
(2a-b) (2a-b) (2a-b)
( iii ) 27-125a3-135a+225a2
The given expression can be written as
(3)3-(5a)3-3(32)(5a)+3(3)((5a)2)
(3)3-(5a)3-3(3)(5a)(3-5a)
(35a)3 ( Using identity VII )
(3-5a) (3-5a) (3-5a)
( iv ) 64a3-27b3-144a2b+108ab2
The given expression can be written as
(4a)3-(3b)3-3((4a)2)(3b)+3(4a)((3b)2)
(4a)3-(3b)3-3(4a)(3b)(2a-3b)
(4a-3b)3 ( Using identity VII )
(4a-3b) (4a-3b) (4a-3b)
( v ) 27p3-1216-92p2+14p
The given expression can be written as
(3p)3-(16)3-3((3p)2)(16)+3(3p)((16)2)
(3p)3-(16)3-3(3p)(16)(3p-16)
(3p-16)3 ( Using identity VII )
(3p-16) (3p-16) (3p-16)
9. Verify :
( i ) x3+y3=(x+y) (x2-xy+y2)
( ii ) x3-y3=(x-y) (x2+xy+y2)
solution :
( i ) x3+y3=(x+y) (x2-xy+y2)
We know that,
(x+y)3=x3+y3+3xy(x+y)
⇒x3+y3=(x+y)3-3xy(x+y)
⇒x3+y3=(x+y)[(x+y)2-3xy] ( Taking (x+y) common )
⇒x3+y3=(x+y)[x2+y2+2xy-3xy]
⇒x3+y3=(x+y)(x2-xy+y2)
Proved.
( ii ) x3-y3=(x-y) (x2+xy+y2)
We know that,
(x-y)3=x3-y3-3xy(x-y)
⇒x3-y3=(x-y)3+3xy(x-y)
⇒x3-y3=(x-y)[(x-y)2+3xy] ( Taking (x-y) common )
⇒x3±y3=(x-y)[x2+y2-2xy+3xy]
⇒x3-y3=(x-y)(x2+xy+y2)
Proved.
10. Factorise each of the following:
( i ) 27y3+125z3
( ii ) 64m3-343n3
solution :
( i ) 27y3+125z3
The expression, 27y3+125z3 can be written as (3y)3+(5z)3
27y3+125z3 = (3y)3+(5z)3
We know that,
⇒x3+y3=(x+y)(x2-xy+y2)
27y3+125z3 = (3y)3+(5z)3
=(3y+5z)((3x)2-(3x)(5z)+(5z)2)
=(3y+5z)(9y2-15yz+25z2)
( ii ) 64m3-343n3
The expression, 64m3-343n3 can be written as (4m)3-(7n)3
64m3-343n3 = (4m)3+(7n)3
We know that,
⇒x3-y3=(x-y)(x2+xy+y2)
64m3-343n3 = (4m)3-(7n)3
=(4m-7n)((4m)2+(4m)(7n)+(7n)2)
=(4m-7n)(16m2+28mn+49n2)
11. Factorise : 27x3+y3+z3-9xyz
solution :
Factorise : 27x3+y3+z3-9xyz
Here, we have
27x3+y3+z3-9xyz
(3x)3+(y)3+(z)3-3(3x)(y)(z)
(3x+y+z) [(3x)2+(y)2+(z)2-(3x)(y)-(y)(z)-(z)(3x)]
(3x+y+z) (9x2+y2+z2-3xy-yz-3xz)
12. Verify that x3+y3+z3-3xyz =12(x+y+z) [(x-y)2+(y-z)2+(z-x)2]
solution :
Verify that x3+y3+z3-3xyz =12(x+y+z) [(x-y)2+(y-z)2+(z-x)2]
We know that,
x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2-xy-yz-zx)
⇒ x3+y3+z3-3xyz =12(x+y+z) [2(x2+y2+z2-xy-yz-zx)]
= 12(x+y+z) (2x2+2y2+2z2-2xy-2yz-2zx)
= 12(x+y+z) [(x2+y2-2xy)(y2+z2-2yz)(z2+x2-2zx)]
= x3+y3+z3-3xyz =12(x+y+z) [(x-y)2+(y-z)2+(z-x)2]
13. If x+y+z=0, show that x3+y3+z3=3xyz.
solution :
If x+y+z=0, show that x3+y3+z3=3xyz.
We know that,
x3+y3+z3-3xyz= (x+y+z)(x2+y2+z2-xy-yz-zx)
Now, according to the question, let (x+y+z)=0,
then, x3+y3+z3-3xyz= (0)(x2+y2+z2–xy–yz–xz)
⇒ x3+y3+z3–3xyz=0
⇒ x3+y3+z3=3xyz
14. Without actually calculating the cubes, find the value of each of the following:
( i ) (-12)3+(7)3+(5)3
( ii ) (28)3+(-15)3+(-13)3
solution :
( i ) (-12)3+(7)3+(5)3
Let a =−12
b=7
c=5
We know that if x+y+z=0, then x3+y3+z3=3xyz.
Here, −12+7+5=0
(−12)3+(7)3+(5)3=3xyz
=3×(-12)×7×5
=-1260
( ii ) (28)3+(-15)3+(-13)3
Let a =28
b=-15
c=-13
We know that if x+y+z=0, then x3+y3+z3=3xyz.
Here, 28+(-15)+(-13)=0
(28)3+(-15)3+(-13)3=3xyz
=3×(28)×(-15)×(-13)
=16380
15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
( i ) Area:25a2-35a+12
( ii ) Area:35y2-13y-12
solution :
( i ) Area:25a2-35a+12
By splitting method:
If we can find two numbers p and q such that,
p+q=-35 and p q = 25 × 12 = 300
then we can get the factor.
So, let us look for the pair of factors of 300.
Some are − 15 and − 20.
of these pairs, − 15 and − 20 will giue us p + q = − 35.
So, 25a2-35a+12 =25a2+[(-15)+(-20)]a+12
= 25a2-15a-20a+12
= 5a(5a-3)-4(5a-3)
= (5a-4)(5a-3)
= Possible expression for length =(5a–4)
= Possible expression for breadth =(5a–3)
( ii ) Area:35y2-13y-12
By splitting method:
If we can find two numbers p and q such that,
p+q=-13 and p q = 35 × − 12 = −420
then we can get the factor.
So, let us look for the pair of factors of − 420.
Some are − 15 and 28.
of these pairs, − 15 and 28 will giue us p + q = − 13.
So, 35y2-13y-12 =35y2+[(-15)+28]y-12
= 35y2-15y+28y-12
= 5y(7y-3)-4(7y-3)
= (5y-4)(7y-3)
= Possible expression for length =(5y–4)
= Possible expression for breadth =(7y–3)
16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
( i ) Volume:3x2-12x
( ii ) Volume:12ky2+8ky-20k
solution :
( i ) Volume:3x2-12x
3x2–12x can be written as 3x(x–4)
Taking 3x common both the terms.
Possible expression for length = 3
Possible expression for breadth = x
Possible expression for height = (x – 4)
( ii ) Volume:12ky2+8ky-20k
12ky2+8ky–20k can be written as 4k(3y2+2y–5)
Taking 4k common both the terms.
Here, 4k(3y2+2y-5)
By splitting method:
4k(3y2+2y-5) is written as 4k(3y2+5y-3y-5)
4k[y(3y+5)-1(3y+5)]
4k[(3y+5)(y-1)]
4k(3y+5)(y-1)
Possible expression for length = 4k
Possible expression for breadth = ( 3y + 5 )
Possible expression for height = (y – 1)
0 Comments