NCERT Solutions for Class 9 Math Chapter 2.4 POLYNOMIALS ALL SOLUTION

CLASS :- 9, EX :- 2.4



1.  Determine which of the following polynomials has ` \(x+1)\ ` a factor :

(i)  ` \x^3+x^2+x+1\ `

(ii)  ` \x^4+x^3+x^2+1\ `

(iii)  ` \x^4+3x^3+3x^2+x+1\ `

(iv)  ` \x^3-x^2-(2+\sqrt{2})x+\sqrt{2}\ `

solution :

(i)   ` \x^3+x^2+x+1\ `

   Let, ` \p(x)=x^3+x^2+x+1\ `

   The zero of ` \(x+1)\ ` is

   ` \x+1=0\ `

   ` \x=-1\ `

   So,

   ` \p(-1)=(-1)^3+(-1)^2+(-1)+1\ `

   ` \=-1+1-1+1\ `

   ` \=0\ `

   ∴ By factor theorem, ` \x+1\ ` is a factor of ` \x^3+x^2+x+1\ `.

(ii)   ` \x^4+x^3+x^2+1\ `

   Let, ` \p(x)=x^4+x^3+x^2+1\ `

   The zero of ` \(x+1)\ ` is

   ` \x+1=0\ `

   ` \x=-1\ `

   So,

   ` \p(-1)\ `=` \(-1)^4+(-1)^3+(-1)^2+(-1)+1\ `

   ` \=1-1+1-1+1\ `

   ` \=1\ne0\ `

   ∴ By factor theorem, ` \x+1\ ` is not a factor of ` \x^4+x^3+x^2+1\ `.

(iii)   ` \x^4+3x^3+3x^2+x+1\ `

   Let, ` \p(x)=x^4+3x^3+3x^2+x+1\ `

   The zero of ` \(x+1)\ ` is

   ` \x+1=0\ `

   ` \x=-1\ `

   So,

   ` \p(-1)\ `=` \(-1)^4+3×(-1)^3+3×(-1)^2+(-1)+1\ `

   ` \=1-3+3-1+1\ `

   ` \=1ne0\ `

   ∴ By factor theorem, ` \x+1\ ` is not a factor of ` \x^4+3x^3+3x^2+x+1\ `.

(iv)   ` \x^3-x^2-(2+\sqrt{2})x+\sqrt{2}\ `

   Let, ` \x^3-x^2-(2+\sqrt{2})x+\sqrt{2}\ `

   The zero of ` \(x+1)\ ` is

   ` \x+1=0\ `

   ` \x=-1\ `

   So,

   ` \p(-1)\ `=` \(-1)^3-(-1)^2-(2+\sqrt{2})(-1)+\sqrt{2}\ `

   ` \=-1-1-(-2-\sqrt{2})+\sqrt{2}\ `

   ` \=-2+2+\sqrt{2}+\sqrt{2}\ `

   ` \=2\sqrt{2}ne0\ `

   ∴ By factor theorem, ` \x+1\ ` is not a factor of ` \x^3-x^2-(2+\sqrt{2})x+\sqrt{2}\ `.

2.  Use the Factor Theorem to determine whether ` \g(x)\ ` is a factor of ` \p(x)\ ` in each of the following cases:

(i)  ` \p(x)=2x^3+x^2-2x-1\ `,` \g(x)=x+1\ `

(ii)  ` \p(x)=x^3+3x^2+3x+1\ `,` \g(x)=x+2\ `

(iii)  ` \p(x)=x^3-4x^2+x+6\ `,` \g(x)=x-3\ `

solution :

(i)   ` \p(x)=2x^3+x^2-2x-1\ `,` \g(x)=x+1\ `

   ` \g(x)=0\ `

   ` \⇒x+1=0\ `

   ` \⇒x=-1\ `

   The zero of ` \g(x)\ ` is ` \-1\ `

   Now,

   ` \p(-1)=2(-1)^3+(-1)^2-2(-1)-1\ `

   ` \=-2+1+2-1\ `

   ` \=-1+1\ `

   ` \= 0\ `

   ∴ By factor theorem, ` \g(x)\ ` is a factor of ` \p(x)\ `.

(ii)   ` \p(x)=x^3+3x^2+3x+1\ `,` \g(x)=x+2\ `

   ` \p(x)=x^3+3x^2+3x+1\ `,` \g(x)=x+2\ `

   ` \g(x)=0\ `

   ` \⇒x+2=0\ `

   ` \x=-2\ `

   The zero of ` \g(x)\ ` is − 2

   Now,

   ` \p(-2)=(-2)^3+3(-2)^2+3(-2)+1\ `

   ` \=-8+12-6+1\ `

   ` \= -1ne0\ `

   ∴ By factor theorem, ` \g(x)\ ` is not a factor of ` \p(x)\ `.

(iii)   ` \p(x)=x^3-4x^2+x+6\ `,` \g(x)=x-3\ `

   ` \p(x)=x^3-4x^2+x+6\ `,` \g(x)=x-3\ `

   ` \g(x)=0\ `

   ` \⇒x-3=0\ `

   ` \⇒x=3\ `

   The zero of ` \g(x)\ ` is − 1.

   Now,

   ` \p(3)=(3)^3-4(3)^2+(3)+6\ `

   ` \=27-36+3+6\ `

   ` \=0\ `

   ∴ By factor theorem, ` \g(x)\ ` is a factor of ` \p(x)\ `.

3.  Find the value of ` \k\ `, if ` \x-1\ ` is a factor of ` \p(x)\ ` in each of the following cases:

(i)  ` \p(x)=x^2+x+k\ `

(ii)  ` \p(x)=2x^2+kx+\sqrt{2}\ `

(iii)  ` \p(x)=kx^2-\sqrt{2}x+1\ `

(iv)  `\p(x)=kx^2-3x+k\ `

solution :

(i)   ` \p(x)=x^2+x+k\ `

   As ` \x-1\ ` is a factor of ` \p(x)=x^2+x+k\ `,

   ` \p(1)=0\ `

   Now,

   ` \p(1)=1^2+1+k\ `

   So,

   ` \1+1+k=0\ `

   ` \⇒2+k=0\ `

   ` \⇒k=-2\ `

   So, the value of ` \k\ ` is ` \-2\ `.

(ii)   ` \p(x)=2x^2+kx+\sqrt{2}\ `

   As ` \x-1\ ` is a factor of ` \p(x)=2x^2+kx+\sqrt{2}\ `,

   ` \p(1)=0\ `

   Now,

   ` \p(1)=2×1^2+k×1+\sqrt{2}\ `

   So,

   ` \2+k+\sqrt{2}=0\ `

   ` \⇒k=-2-\sqrt{2}\ `

   ` \⇒k=-(2+\sqrt{2})\ `

   So, the value of ` \k\ ` is ` \-(2+\sqrt{2})\ ` .

(iii)   ` \p(x)=kx^2-\sqrt{2}x+1\ `

   As `\x-1\ ` is a factor of ` \p(x)=kx^2-\sqrt{2}x+1\ `,

   ` \p(1)=0\ `

   Now,

   ` \p(1)=k×1^2-\sqrt{2}×1+1\ `

   So,

   ` \k-\sqrt{2}+1=0\ `

   ` \⇒k=\sqrt{2}-1\ `

   So, the value of ` \k\ ` is ` \sqrt{2}-1\ `.

(iv)   `\p(x)=kx^2-3x+k\ `

   As ` \x+1\ ` is a factor of `\p(x)=kx^2-3x+k\ `,

   ` \p(1)=0\ `

   Now,

   ` \p(1)=k×1^2-3×+k\ `

   So,

   ` \k-3+k=0\ `

   ` \⇒2k=3\ `

   ` \⇒k=\frac{3}{2}\ `

   So, the value of ` \k\ ` is ` \frac{3}{2}\ `.

4.  Factorise :

(i)  ` \12x^2+7x+3\ `

(ii)  ` \2x^2+7x+3\ `

(iii)  ` \6x^2+5x-6\ `

(iv)  ` \3x^2-x-4\ `

solution :

(i)   ` \12x^2+7x+3\ `

   By splitting method:

   If we can find two numbers ` \p\ ` and ` \q\ ` such that,

   ` \p+q=-7\ ` and ` \pq=12×1=12\ `,

   then we can get the factor.

   So, let us look for the pair of factors of 12.

   Some are 1 and 12, 2 and 6, − 3 and − 4, 3 and 4 etc.

    of these pairs, − 3 and − 4 will giue us ` \p+q=-7\ `.

   So,

   ` \12x^2-7x+1\ `

   ` \=12x^2+(-3+(-4))x+1\ `

   ` \=12x^2-3x-4x+1\ `

   ` \=3x(4x-1)-1(4x-1)\ `

   ` \(3x-1)(4x-1)\ `

   The factor of ` \12x^2+7x+3\ ` is ` \(3x-1)(4x-1)\ `.

(ii)   ` \2x^2+7x+3\ `

   By splitting method:

   If we can find two numbers ` \p\ ` and ` \q\ ` such that,

   ` \p+q=7\ ` and ` \pq=3×2=6\ `,

   then we can get the factor.

   So, let us look for the pair of factors of 6.

   Some are 1 and 6, 2 and 3, − 3 and − 2 etc.

    of these pairs, 1 and 6 will giue us ` \p+q=7\ `.

   So,

   ` \2x^2+7x+3\ `

   ` \=2x^2+(1+6)x+3\ `

   ` \=2x^2+1x+6x+3\ `

   ` \=x(2x+1)+3(2x+1)\ `

   ` \=(x+3)(2x+1)\ `

   The factor of ` \2x^2+7x+3\ ` is ` \(x+3)(2x+1)\ `.

(iii)   ` \6x^2+5x-6\ `

   By splitting method:

   If we can find two numbers ` \p\ ` and ` \q\ ` such that,

   ` \p+q=5\ ` and ` \pq=6×(-6)=-36\ `,

   then we can get the factor.

   So, let us look for the pair of factors of − 36.

   Some are 1 and − 36, 6 and − 6, − 9 and − 4, 3 and − 12 etc.

    of these pairs, 9 and − 4 will giue us ` \p+q=-5\ `.

   So,

   ` \6x^2+5x-6\ `

   ` \=6x^2+(9+(-4))x-6\ `

   ` \=6x^2+9x-4x-6\ `

   ` \=3x(2x+3)-2(2x+3)\ `

   ` \(3x-2)(2x+3)\ `

   The factor of ` \6x^2+5x-6\ ` is ` \(3x-2)(2x+3)\ `.

(iv)   ` \3x^2-x-4\ `

   By splitting method:

   If we can find two numbers ` \p\ ` and ` \q\ ` such that,

   ` \p+q=-1\ ` and ` \pq=3×(-4)=-12\ `,

   then we can get the factor.

   So, let us look for the pair of factors of − 12.

   Some are 1 and − 12, 2 and − 6, − 3 and 4, 3 and − 4 etc.

    of these pairs, 3 and − 4 will giue us ` \p+q=-1\ `.

   So,

   ` \3x^2-x-4\ `

   ` \=3x^2+(3+(-4))x-4\ `

   ` \=3x^2+3x-4x-4\ `

   ` \=3x(x+1)-4(x+1)\ `

   ` \(3x-4)(x+1)\ `

   The factor of ` \3x^2-x-4\ ` is ` \(3x-4)(x+1)\ `.

5.  Factorise :

(i)  ` \x^3-2x^2-x+2\ `

(ii)  ` \x^3-3x^2-9x-5\ `

(iii)  ` \x^3+13x^2+32x+20\ `

(iv)  ` \2y^3+y^2-2y-1\ `

solution :

(i)   ` \x^3-2x^2-x+2\ `

   Let,

   ` \p(x)=x^3-2x^2-x+2\ `

   We shall now look for all the factors of 2.

   Some of these are ± 1, ± 2.

   By trial, we find that ` \p(1)=0\ `.

   So,

   ` \x-1\ ` is a factor of ` \p(x)\ `.

   Now we see that

   ` \x^3-2x^2-x+2\ `

   ` \=x^3-x^2-x^2+x-2x+2\ `

   ` \=x^2(x-1)-x(x-1)-2(x-1)\ `

   ` \=(x-1)(x^2-x-2)\ `

   We could have also got this by dividing ` \p(x)\ ` by ` \x-1\ `.

   Now ` \x^2-x-2\ ` can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   ` \x^2-x-2\ `

   ` \=x^2+1x-2x-2\ `

   ` \=x(x-1)-2(x+1)\ `

   So,

   ` \x^3-2x^2-x+2\ `

   ` \=(x-1)(x-2)(x+1)\ `

(ii)   ` \x^3-3x^2-9x-5\ `

   Let,

   ` \p(x)=x^3-3x^2-9x-5\ `

   We shall now look for all the factors of − 5.

   Some of these are ± 1, ± 5.

   By trial, we find that p ( − 1 ) = 0.

   So, ` \x+1\ ` is a factor of ` \p(x)\ `.

   Now we see that

   ` \x^3-3x^2-9x-5\ `

   ` \=x^3+x^2-4x^2-4x-5x-5\ `

   ` \=x^2(x+1)-4x(x+1)-5(x+1)\ `

   ` \(x+1)(x^2-4x-5)\ `

   We could have also got this by dividing ` \p(x)\ ` by ` \x+1\ `.

   Now ` \x^2-4x-5\ ` can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

    By splitting the middle term, we have:

   ` \x^2-4x-5\ `

   ` \=x^2+1x-5x-5\ `

   ` \=x(x+1)-5(x+1)\ `

   ` \=(x-5)(x+1)\ `

   So,

   ` \x^3-3x^2-9x-5\ `

   ` \=(x+1)(x-5)(x+1)\ `

(iii)    ` \x^3+13x^2+32x+20\ `

   Let,

   ` \p(x)=x^3+13x^2+32x+20\ `

   We shall now look for all the factors of 20.

   Some of these are ± 1, ± 2, ± 4, ± 5, ± 10, ± 20.

   By trial, we find that ` \p(-1)=0\ `.

   So, ` \x+1\ ` is a factor of ` \p(x)\ `.

   Now we see that

   ` \x^3+13x^2+32x+20\ `

   ` \=x^3+x^2+12x^2+12x+20x+20\ `

   ` \=x^2(x+1)+12x(x+1)+20(x+1)\ `

   ` \(x+1)(x^2+12x+20)\ `

   We could have also got this by dividing ` \p(x)\ ` by ` \x+1\ `.

   Now ` \x^2+12x+20\ ` can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   ` \x^2+12x+20\ `

   ` \=x^2+2x+10x+20\ `

   ` \=x(x+2)+10(x+2)\ `

   ` \=(x+2)(x+10)\ `

   So,

   ` \x^3+13x^2+32x+20\ `

   ` \=(x+1)(x+2)(x+10)\ `

(iv)   ` \2y^3+y^2-2y-1\ `

   Let,

   ` \p(x)=2y^3+y^2-2y-1\ `

   We shall now look for all the factors of − 1.

   Some of these are ± 1.

   By trial, we find that ` \p(1)=0\ `.

   So, ` \y-1\ ` is a factor of ` \p(y)\ `.

   Now we see that

   ` \2y^3+y^2-2y-1\ `

   ` \=2y^3+2y^2-y^2-y-y-1\ `

   ` \=2y^2(y+1)-y(y+1)-1(y+1)\ `

   ` \=(y+1)(2y^2-y-1)\ `

   We could have also got this by dividing ` \p(y)\ ` by ` \y-1\ `.

   Now ` \2y^2-y-1\ ` can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   ` \2y^2-y-1\ `

   ` \=2y^2-2y+y-1\ `

   ` \=2y(y-1)+1(y-1)\ `

   So,

   ` \2y^3+y^2-2Y-1\ `

   ` \=(y-1)(2y+1)(y+1)\ `



0 Comments