Processing math: 100%

NCERT Solutions for Class 9 Math Chapter 2.4 POLYNOMIALS ALL SOLUTION

CLASS :- 9, EX :- 2.4



1.  Determine which of the following polynomials has (x+1) a factor :

(i)  x3+x2+x+1

(ii)  x4+x3+x2+1

(iii)  x4+3x3+3x2+x+1

(iv)  x3-x2-(2+√2)x+√2

solution :

(i)   x3+x2+x+1

   Let, p(x)=x3+x2+x+1

   The zero of (x+1) is

   x+1=0

   x=-1

   So,

   p(-1)=(-1)3+(-1)2+(-1)+1

   =-1+1-1+1

   =0

   âˆ´ By factor theorem, x+1 is a factor of x3+x2+x+1.

(ii)   x4+x3+x2+1

   Let, p(x)=x4+x3+x2+1

   The zero of (x+1) is

   x+1=0

   x=-1

   So,

   p(-1)=(-1)4+(-1)3+(-1)2+(-1)+1

   =1-1+1-1+1

   =1≠0

   âˆ´ By factor theorem, x+1 is not a factor of x4+x3+x2+1.

(iii)   x4+3x3+3x2+x+1

   Let, p(x)=x4+3x3+3x2+x+1

   The zero of (x+1) is

   x+1=0

   x=-1

   So,

   p(-1)=(-1)4+3×(-1)3+3×(-1)2+(-1)+1

   =1-3+3-1+1

   =1≠0

   âˆ´ By factor theorem, x+1 is not a factor of x4+3x3+3x2+x+1.

(iv)   x3-x2-(2+√2)x+√2

   Let, x3-x2-(2+√2)x+√2

   The zero of (x+1) is

   x+1=0

   x=-1

   So,

   p(-1)=(-1)3-(-1)2-(2+√2)(-1)+√2

   =-1-1-(-2-√2)+√2

   =-2+2+√2+√2

   =2√2≠0

   âˆ´ By factor theorem, x+1 is not a factor of x3-x2-(2+√2)x+√2.

2.  Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i)  p(x)=2x3+x2-2x-1,g(x)=x+1

(ii)  p(x)=x3+3x2+3x+1,g(x)=x+2

(iii)  p(x)=x3-4x2+x+6,g(x)=x-3

solution :

(i)   p(x)=2x3+x2-2x-1,g(x)=x+1

   g(x)=0

   â‡’x+1=0

   â‡’x=-1

   The zero of g(x) is -1

   Now,

   p(-1)=2(-1)3+(-1)2-2(-1)-1

   =-2+1+2-1

   =-1+1

   =0

   âˆ´ By factor theorem, g(x) is a factor of p(x).

(ii)   p(x)=x3+3x2+3x+1,g(x)=x+2

   p(x)=x3+3x2+3x+1,g(x)=x+2

   g(x)=0

   â‡’x+2=0

   x=-2

   The zero of g(x) is − 2

   Now,

   p(-2)=(-2)3+3(-2)2+3(-2)+1

   =-8+12-6+1

   =-1≠0

   âˆ´ By factor theorem, g(x) is not a factor of p(x).

(iii)   p(x)=x3-4x2+x+6,g(x)=x-3

   p(x)=x3-4x2+x+6,g(x)=x-3

   g(x)=0

   â‡’x-3=0

   â‡’x=3

   The zero of g(x) is − 1.

   Now,

   p(3)=(3)3-4(3)2+(3)+6

   =27-36+3+6

   =0

   âˆ´ By factor theorem, g(x) is a factor of p(x).

3.  Find the value of k, if x-1 is a factor of p(x) in each of the following cases:

(i)  p(x)=x2+x+k

(ii)  p(x)=2x2+kx+√2

(iii)  p(x)=kx2-√2x+1

(iv)  p(x)=kx2-3x+k

solution :

(i)   p(x)=x2+x+k

   As x-1 is a factor of p(x)=x2+x+k,

   p(1)=0

   Now,

   p(1)=12+1+k

   So,

   1+1+k=0

   â‡’2+k=0

   â‡’k=-2

   So, the value of k is -2.

(ii)   p(x)=2x2+kx+√2

   As x-1 is a factor of p(x)=2x2+kx+√2,

   p(1)=0

   Now,

   p(1)=2×12+k×1+√2

   So,

   2+k+√2=0

   â‡’k=-2-√2

   â‡’k=-(2+√2)

   So, the value of k is -(2+√2) .

(iii)   p(x)=kx2-√2x+1

   As x-1 is a factor of p(x)=kx2-√2x+1,

   p(1)=0

   Now,

   p(1)=k×12-√2×1+1

   So,

   k-√2+1=0

   â‡’k=√2-1

   So, the value of k is √2-1.

(iv)   p(x)=kx2-3x+k

   As x+1 is a factor of p(x)=kx2-3x+k,

   p(1)=0

   Now,

   p(1)=k×12-3×+k

   So,

   k-3+k=0

   â‡’2k=3

   â‡’k=32

   So, the value of k is 32.

4.  Factorise :

(i)  12x2+7x+3

(ii)  2x2+7x+3

(iii)  6x2+5x-6

(iv)  3x2-x-4

solution :

(i)   12x2+7x+3

   By splitting method:

   If we can find two numbers p and q such that,

   p+q=-7 and pq=12×1=12,

   then we can get the factor.

   So, let us look for the pair of factors of 12.

   Some are 1 and 12, 2 and 6, − 3 and − 4, 3 and 4 etc.

    of these pairs, − 3 and − 4 will giue us p+q=-7.

   So,

   12x2-7x+1

   =12x2+(-3+(-4))x+1

   =12x2-3x-4x+1

   =3x(4x-1)-1(4x-1)

   (3x-1)(4x-1)

   The factor of 12x2+7x+3 is (3x-1)(4x-1).

(ii)   2x2+7x+3

   By splitting method:

   If we can find two numbers p and q such that,

   p+q=7 and pq=3×2=6,

   then we can get the factor.

   So, let us look for the pair of factors of 6.

   Some are 1 and 6, 2 and 3, − 3 and − 2 etc.

    of these pairs, 1 and 6 will giue us p+q=7.

   So,

   2x2+7x+3

   =2x2+(1+6)x+3

   =2x2+1x+6x+3

   =x(2x+1)+3(2x+1)

   =(x+3)(2x+1)

   The factor of 2x2+7x+3 is (x+3)(2x+1).

(iii)   6x2+5x-6

   By splitting method:

   If we can find two numbers p and q such that,

   p+q=5 and pq=6×(-6)=-36,

   then we can get the factor.

   So, let us look for the pair of factors of − 36.

   Some are 1 and − 36, 6 and − 6, − 9 and − 4, 3 and − 12 etc.

    of these pairs, 9 and − 4 will giue us p+q=-5.

   So,

   6x2+5x-6

   =6x2+(9+(-4))x-6

   =6x2+9x-4x-6

   =3x(2x+3)-2(2x+3)

   (3x-2)(2x+3)

   The factor of 6x2+5x-6 is (3x-2)(2x+3).

(iv)   3x2-x-4

   By splitting method:

   If we can find two numbers p and q such that,

   p+q=-1 and pq=3×(-4)=-12,

   then we can get the factor.

   So, let us look for the pair of factors of − 12.

   Some are 1 and − 12, 2 and − 6, − 3 and 4, 3 and − 4 etc.

    of these pairs, 3 and − 4 will giue us p+q=-1.

   So,

   3x2-x-4

   =3x2+(3+(-4))x-4

   =3x2+3x-4x-4

   =3x(x+1)-4(x+1)

   (3x-4)(x+1)

   The factor of 3x2-x-4 is (3x-4)(x+1).

5.  Factorise :

(i)  x3-2x2-x+2

(ii)  x3-3x2-9x-5

(iii)  x3+13x2+32x+20

(iv)  2y3+y2-2y-1

solution :

(i)   x3-2x2-x+2

   Let,

   p(x)=x3-2x2-x+2

   We shall now look for all the factors of 2.

   Some of these are ± 1, ± 2.

   By trial, we find that p(1)=0.

   So,

   x-1 is a factor of p(x).

   Now we see that

   x3-2x2-x+2

   =x3-x2-x2+x-2x+2

   =x2(x-1)-x(x-1)-2(x-1)

   =(x-1)(x2-x-2)

   We could have also got this by dividing p(x) by x-1.

   Now x2-x-2 can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   x2-x-2

   =x2+1x-2x-2

   =x(x-1)-2(x+1)

   So,

   x3-2x2-x+2

   =(x-1)(x-2)(x+1)

(ii)   x3-3x2-9x-5

   Let,

   p(x)=x3-3x2-9x-5

   We shall now look for all the factors of − 5.

   Some of these are ± 1, ± 5.

   By trial, we find that p ( − 1 ) = 0.

   So, x+1 is a factor of p(x).

   Now we see that

   x3-3x2-9x-5

   =x3+x2-4x2-4x-5x-5

   =x2(x+1)-4x(x+1)-5(x+1)

   (x+1)(x2-4x-5)

   We could have also got this by dividing p(x) by x+1.

   Now x2-4x-5 can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

    By splitting the middle term, we have:

   x2-4x-5

   =x2+1x-5x-5

   =x(x+1)-5(x+1)

   =(x-5)(x+1)

   So,

   x3-3x2-9x-5

   =(x+1)(x-5)(x+1)

(iii)    x3+13x2+32x+20

   Let,

   p(x)=x3+13x2+32x+20

   We shall now look for all the factors of 20.

   Some of these are ± 1, ± 2, ± 4, ± 5, ± 10, ± 20.

   By trial, we find that p(-1)=0.

   So, x+1 is a factor of p(x).

   Now we see that

   x3+13x2+32x+20

   =x3+x2+12x2+12x+20x+20

   =x2(x+1)+12x(x+1)+20(x+1)

   (x+1)(x2+12x+20)

   We could have also got this by dividing p(x) by x+1.

   Now x2+12x+20 can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   x2+12x+20

   =x2+2x+10x+20

   =x(x+2)+10(x+2)

   =(x+2)(x+10)

   So,

   x3+13x2+32x+20

   =(x+1)(x+2)(x+10)

(iv)   2y3+y2-2y-1

   Let,

   p(x)=2y3+y2-2y-1

   We shall now look for all the factors of − 1.

   Some of these are ± 1.

   By trial, we find that p(1)=0.

   So, y-1 is a factor of p(y).

   Now we see that

   2y3+y2-2y-1

   =2y3+2y2-y2-y-y-1

   =2y2(y+1)-y(y+1)-1(y+1)

   =(y+1)(2y2-y-1)

   We could have also got this by dividing p(y) by y-1.

   Now 2y2-y-1 can be factorised either by splitting the middle term or by using the Factor theorem. By splitting the middle term, we have:

   By splitting the middle term, we have:

   2y2-y-1

   =2y2-2y+y-1

   =2y(y-1)+1(y-1)

   So,

   2y3+y2-2Y-1

   =(y-1)(2y+1)(y+1)



0 Comments