NCERT Solutions for Class 9 Math Chapter 2.2 POLYNOMIALS ALL SOLUTION

CLASS :- 9, EX :- 2.2



1.    Find the value of the polynomial ` \5x-4x^2+3\ ` at

(i)    ` \x=0\ `

(ii)    ` \x=-1\ `

(iii)    ` \x=2\ `

solution :

(i)    ` \x=0\ `

    Let,

    ` \p(x)=5x-4x^2+3\ `

    The value of the polynomial ` \p(x)\ ` at ` \x=0\ ` is given

    ` \p(0)=5×(0)-4×(0)^2+3\ `

    ` \=0-0+3\ `

    ` \=3\ `

(ii)    ` \x=-1\ `

    Let,

    ` \p(x)=5x-4x^2+3\ `

    The value of the polynomial ` \p(x)\ ` at ` \x=-1\ ` is given

    ` \p(-1)=5×(-1)-4×(-1)^2+3\ `

    ` \=(-5)-4+3\ `

    ` \=-5-4+3\ `

    ` \=-9+3\ `

    ` \=-6\ `

(iii)    ` \x=2\ `

    Let,

    ` \p(x)=5x-4x^2+3\ `

    The value of the polynomial ` \p(x)\ ` at ` \x=2\ ` is given

    ` \p(2)=5×(2)-4×(2)^2+3\ `

    ` \=10-(4×4)+3\ `

    ` \=10-16+3\ `

    ` \=-6+3\ `

    ` \=-3\ `

2.    Find ` \p(0)\ `, ` \p(1)\ ` and ` \p(2)\ ` for each of the following polynomials:

(i)    ` \p(y)=y^2-y=1\ `

(ii)    ` \p(t)=2+t+2t^2-t^3\ `

(iii)    ` \p(x)=x^3\ `

(iv)    ` \p(x)=(x-1)(x+1)\ `

solution :

(i)    ` \p(y)=y^2-y=1\ `

    ` \p(y)=y^2-y=1\ `

    When,  ` \p(0)\ `

    ` \p(0)=0^2-0+1\ `

    ` \=0-0+1\ `

    ` \=1\ `

    When,  ` \p(1)\ `

    ` \p(1)=1^2-1+1\ `

    = 1 − 1 + 1

    ` \=0+1\ `

    ` \=1\ `

    When,  ` \p(2)\ `

    ` \p(2)=2^2-2+1\ `

    ` \=4-2+1\ `

    ` \2+1\ `

    ` \=3\ `

(ii)    ` \p(t)=2+t+2t^2−t^3\ `

    ` \p(t)=2+t+2t^2−t^3\ `

    When,  ` \p(0)\ `

    ` \p(0)=2+ 0+2×(0)^2−0^3\ `

    ` \=2+0−0\ `

    ` \=2\ `

    When,  ` \p(1)\ `

    ` \p(1)= 2 + 1 + 2×(1)^2−1^3\ `

    ` \=3+2-1\ `

    ` \=5-1\ `

    ` \=4\ `

    When,  ` \p(2)\ `

    ` \p(2)=2+2+2×(2)^2-2^3\ `

    ` \=4+8-8\ `

    ` \=4+0\ `

    ` \=4\ `

(iii)    ` \p ( x ) = x^3\ `

    ` \p ( x ) = x^3\ `

    When,  ` \p ( 0 )\ `

    ` \P(0)=0^3\ `

    ` \= 0\ `

    When,  ` \p ( 1 )\ `

    ` \p(1)=1^3\ `

    ` \= 1\ `

    When,  ` \P(2)\ `

    ` \p(2)=2^3\ `

    ` \= 8\ `

(iv)    ` \P(x)=(x−1)(x+1)\ `

    P ( x ) = ( x − 1 ) ( x + 1 )

    When,  ` \p(0)\ `

    ` \p(0)=(0-1)(0+1)\ `

    ` \=-1×1\ `

    ` \= −1\ `

    When,  ` \p ( 1 )\ `

    ` \p(1)=(1-1)(1+1)\ `

    ` \= 0 × 2\ `

    ` \= 0\ `

    When,  ` \p ( 2 )\ `

    ` \p(2)=(2-1)(2+1)\ `

    ` \= 1 × 3\ `

    ` \= 3\ `

3.    Verify whether the following are zeroes of the polynomial, indicated against them.

(i)    ` \p(x)=3x+1, x=\frac{-1}{3}\ `

(ii)    ` \p(x)=5x-\pi, x=\frac{4}{5}\ `

(iii)    ` \p(x)=x^2-1,x=1,-1\ `

(iv)    ` \p(x)=(x+1)(x-2)\ `, ` \x=-1,2\ `

(v)    ` \p(x)=x^2,x=0\ `

(vi)    ` \p(x)=lx+m\ `, ` \x=\frac{-m}{l}\ `

(vii)    ` \p(x)=3x^2-1\ `, ` \x=\frac{-1}{\sqrt{3}},\frac{2}{\sqrt{3}}\ `

(viii)    ` \p(x)=2x+1,x=\frac{1}{2}\ `

solution :

(i)    ` \p(x)=3x+1, x=\frac{-1}{3}\ `

    For, `\x=\frac{-1}{3}\ `,

    ` \p(x)=3x+1\ `

    ` \p(\frac{-1}{3})=3(\frac{-1}{3})+1\ `

    ` \= −1 + 1\ `

    ` \= 0\ `

    So, ` \frac{-1}{3}\ ` is a zero of ` \p(x)\ `.

(ii)    ` \p(x)=5x-\pi, x=\frac{4}{5}\ `

    For, ` \x=\frac{4}{5}\ `,

    ` \p(x)=5x-\pi\ `

    ` \p(\frac{4}{5})=5×(\frac{4}{5})-\pi\ `

    ` \=4−π\ `

    So, ` \frac{4}{5}\ ` is not a zero of ` \p(x)\ `.

(iii)    ` \p(x)=x^2-1,x=1,-1\ `

    For, ` \x=1\ `,

    ` \p(x)=x^2-1,\ `

    ` \p(1)=1^2-1\ `

    ` \=1−1\ `

    ` \=0\ `

    For, ` \x=-1\ `,

    ` \p(x)=x^2-1\ `,

    ` \p(-1)=-1^2-1\ `

    ` \=1−1\ `

    ` \=0\ `

    So, 1 and -1 is a zero of ` \p(x)\ `.

(iv)    ` \p(x)=(x+1)(x-2)\ `, ` \x=-1,2\ `

    For, ` \x=-1\ `,

    ` \p(x)=(x+1)(x-2),\ `

    ` \p(-1)=(-1+1)(-1– 2)\ `

    ` \=0×(-3)\ `

    ` \= 0\ `

    For, ` \x=2,\ `

    ` \p(x)=(x+1)(x-2)\ `,

    ` \p(2)=(2+1)(2–2)\ `

    ` \=3×0\ `

    ` \= 0\ `

    So, -1 and 2 is a zero of ` \p(x)\ `.

(v)    ` \p(x)=x^2,x=0\ `

    For, ` \x=0\ `,

    ` \p(x)=x^2\ `

    ` \p(0)=0^2\ `

    ` \=0\ `

    So, 0 is a zero of ` \p(x)\ `.

(vi)    ` \p(x)=lx+m,x=\frac{-m}{l}\ `

    For, ` \x=\frac{-m}{l}\ `

    ` \p(x)=lx+m\ `

    ` \p(\frac{-m}{l})=l(\frac{-m}{l})+m\ `

    ` \=-m+m\ `

    ` \=0\ `

    So, ` \frac{-m}{l}\ ` is a zero of ` \p(x)\ `.

(vii)    ` \p(x)=3x^2-1` , ` \x=\frac{-1}{\sqrt{3}}\ `,` \frac{2}{\sqrt{3}}\ `

    For, ` \x=\frac{-1}{\sqrt{3}\ `

    ` \p(x)=3x^2-1\ `

    ` \p(\frac{-1}{\sqrt3})=3(\frac{-1}{\sqrt3})^2-1\ `

    ` \=3×(\frac{1}{3})-1\ `

    ` \=1-1\ `

    ` \=0\ `

    For, ` \x=\frac{2}{\sqrt{3}\ `

    ` \p(x)=3x^2-1\ `

    ` \p(\frac{2}{\sqrt{3}})=3(\frac{2}{\sqrt{3}})^2-1\ `

    ` \=3×(\frac{4}{3})-1\ `

    ` \=4-1\ `

    ` \=3\ `

    ` \=3 ≠ 0\ `

    So, ` \frac{-1}{\sqrt{3})\ ` is a zero of ` \p(x)\ ` but ` \(\frac{2}{\sqrt{3}})\ ` is not a zero of ` \p(x)\ `.

(viii)    ` \p(x)=2x+1,x=\frac{1}{2}\ `

    For, ` \x=\frac{1}{2}\ `,

    ` \p(x)=2x+1\ `

    ` \p(\frac{1}{2})=2(\frac{1}{2})+1\ `

    ` \=1+1\ `

    ` \=2\ `

    ` \=2≠0\ `

    So, ` \frac{1}{2}\ ` is not a zero of `\p(x)\ `.

4.    Find the zero of the polynomial in each of the following cases:

(i)    ` \p(x)=x+5\ `

(ii)    ` \p(x)=x–5\ `

(iii)    ` \p(x)=2x+5\ `

(iv)    ` \p(x)=3x-2\ `

(v)    ` \p(x)=3x\ `

(vi)    ` \p(x)=ax\ `, ` \a≠0\ `

(vii)    ` \p(x)=cx+d\ `, ` \c≠0, c, d\ ` are real numbers.

solution :

(i)    ` \p(x)=x+5\ `

    ` \⇒x+5=0\ `

    ` \⇒x=−5\ `

    So, -5 is a zero of the polynomial ` \p(x)\ `.

(ii)    ` \p(x)=x–5\ `

    ` \p(x)=x–5\ `

    ` \⇒x-5=0\ `

    ` \⇒x=5\ `

    So, 5 is a zero of the polynomial ` \p(x)\ `.

(iii)    ` \p(x)=2x+5\ `

    ` \⇒2x+5=0\ `

    ` \⇒2x=-5\ `

    ` \⇒x=\frac{-5}{2}\ `

    So, ` \frac{-5}{2}\ ` is a zero of the polynomial ` \p(x)\ `.

(iv)    ` \p(x)=3x-2\ `

    ` \⇒3x-2=0\ `

    ` \⇒3x=2\ `

    ` \⇒x=\frac{2}{3}\ `

    So, ` \frac{2}{3}\ ` is a zero of the polynomial p(x).

(v)    ` \p(x)=3x\ `

    ` \⇒3x=0\ `

    ` \⇒x=\frac{0}{3}\ `

    ` \⇒x=0\ `

    So, 0 is a zero of the polynomial ` \p(x)\ `.

(vi)    ` \p(x)=ax\ `, ` \a≠0\ `

    ` \⇒ax=0\ `

    ` \⇒x=\frac{0}{a}\ `

    ` \⇒x=0\ `

    So, 0 is a zero of the polynomial ` \p(x)\ `.

(vii)    ` \p(x)=cx+d\ `, ` \c≠0, c, d\ ` are real numbers.

    ` \⇒cx+d=0\ `

    ` \⇒cx=−d\ `

    ` \⇒x=\frac{-d}{c}\ `

    So, ` \frac{-d}{c}\ ` is a zero of the polynomial ` \p(x)\ `.



0 Comments