Loading [MathJax]/jax/output/CommonHTML/jax.js

NCERT Solutions for Class 9 Math Chapter 6.1 Lines and Angles

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1




1.    In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q1

solution :

   âˆ AOC + ∠COE + ∠BOE = 180°[ Linear pair of angels ]

   But,

   âˆ AOC + ∠BOE = 70° [ Given ]

   âˆ BOD = 40° [ Given ]

   Therefore,

   âˆ AOC + ∠BOE + ∠COE = 180°

   â‡’ 70° + ∠COE = 180°[ ∴ ∠AOC + ∠BOC = 70° (Given) ]

   â‡’ ∠COE = 180° − 70°

   â‡’ ∠COE = 110°

   Now,

   âˆ AOC = ∠BOC [ Vertically opposite angels ]

   â‡’ ∠AOC = 40°[ ∴ ∠BOC = 40° (Given) ]

   Similarly,

   âˆ AOC + ∠BOE + ∠COE = 180°

   â‡’ 40° + ∠BOE + 110° = 180°

   â‡’ 150° + ∠BOE = 180°

   â‡’ ∠BOE = 180° − 150°

   â‡’ ∠BOE = 30°

   So,

   âˆ BOE = 30° and ∠COE = 110°

2.    In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q2

solution :

   b + a + ∠POY = 180°[ Linear pair of angels ]

   But,

   a : b = 2 : 3[ Given ]

   âˆ POY = 90° [ Given ]

   Therefore,

   b + a + ∠POY = 180°

   â‡’ b + a + 90° = 180°

   â‡’ b + a = 180° − 90°

   â‡’ b + a = 90°

   Then,

   a : b = 2 : 3[ Given ]

   a=25×90°

   â‡’ a=2×18°

   â‡’ a=36°

   Similarly,

   a : b = 2 : 3[ Given ]

   b=35×90°

   â‡’ b=3×18°

   â‡’ b=54°

   Now,

   âˆ MOY = c[ Vertically opposite angels ]

   Therefore,

   âˆ MOY = a + ∠POY

   â‡’ ∠MOY = 36° + 90°

   â‡’ ∠MOY = 126°

   âˆ´ c = 126°

   So,

   c = 126°

3.    In Fig. 6.15, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q3

solution :

   âˆ PQR = ∠PRQ [ Given ]

   âˆ PQR + ∠PQS = 180°--------(i)[ Linear pair of angles ]

   Similarly,

   âˆ PRQ + ∠PRT = 180°--------(ii)[ Linear pair of angles ]

   From (i) and (ii),

   We have,

   âˆ PQR + ∠PQS = ∠PRQ + ∠PRT

   But,

   âˆ PQR + ∠PRQ [ Given ]

   âˆ´ ∠PQS = ∠PRT

4.    In Fig. 6.16, if x+y=w+z, then prove that AOB is a line.

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q4

solution :

   We know,

   The angles around a point are 360°.

   x+y+z+w=360°

   But,

   x+y=w+z[ Given ]

   So,

   (x+y)+(x+y)=360°

   â‡’ 2(x+y)=360°

   â‡’ (x+y)=360°2

   â‡’ (x+y)=180°

   â‡’ x+y=180°

   Now,

   I say AOB is a line.

5.    In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that
∠ROS=12(∠QOS-∠POS).

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q5

solution :

   âˆ POS + ∠ROS + ∠ROQ = 180°[ Linear pairs of angels ]

   But,

   âˆ ROQ = 90°[ Given ]

   Then,

   âˆ POS + ∠ROS + ∠ROQ = 180°[ Linear pairs of angels ]

   âˆ POS + ∠ROS + 90° = 180°

   â‡’ ∠POS + ∠ROS = 180° − 90°

   â‡’ ∠POS + ∠ROS = 90°--------(i)

   Now,

   âˆ QOS = ∠ROQ + ∠ROS

   â‡’ ∠QOS = 90° + ∠ROS

   â‡’ ∠QOS − ∠ROS = 90°--------(ii)

   From (i) and (ii),

   We have,

   âˆ POS + ∠ROS = ∠QOS − ∠ROS

   â‡’ ∠POS + ∠ROS + ∠ROS = ∠QOS

   â‡’ ∠POS + 2 ∠ROS = ∠QOS

   â‡’ 2 ∠ROS = ∠QOS − ∠POS

   â‡’ âˆ ROS=∠QOS−∠POS2

   So,

   âˆ ROS=12(∠QOS−∠POS)

6.    It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.

solution :

NCERT-Solutions-for-Class-9-Maths-Chapter-6-Lines-and-Angles-Ex-6.1-Q6

   âˆ XYZ + ∠ZYQ + ∠QYP = 180°[ Linear pairs of angels ]

   â‡’ 64° + ∠ZYQ + ∠QYP = 180°[ ∴ ∠XYZ = 64° (Given) ]

   â‡’ ∠ZYQ + ∠QYP = 180° − 64°

   â‡’ ∠ZYQ + ∠QYP = 116°

   â‡’ ∠ZYQ + ∠ZYQ = 116°[ YQ bisects ∠ZYP So, ∠QYP = ∠ZYQ ]

   â‡’ 2 ∠ZYQ = 116°

   â‡’ ∠ZYQ = 116°2

   â‡’ ∠ZYQ = 58°

   So,

   âˆ´ ∠QYP = 58°

   âˆ´ Reflex ∠QYP = 360° − 58° = 302°

   Now,

   âˆ XYQ = ∠XYZ + ∠ZYQ

   â‡’ ∠XYQ = 64° + ∠QYP[ ∠XYZ = 64° (Given) ∠QYP = ∠ZYQ ]

   â‡’ ∠XYQ = 64° + 58° = 122° [ ∠QYP = 58° ]

   Thus,

   âˆ XYQ = 122° and reflex ∠QYP = 302°



0 Comments