Processing math: 100%

NCERT Solutions for Class 9 Math Chapter 1.5 NUMBER SYSTEM ALL SOLUTION

CLASS :- 9, EX :- 1.1



1. Classify the following numbers as rational or irrational:

(i)   2-√5

(ii)   (3+√23)-√23

(iii)   2√77√7

(iv)   1√2

(v)   2Ï€

solution :

   (i)    2-√5

   2-√5=2-2.2360679774997...........

   So, √5=2.236067977499789696409173...........

   = - 0.2360679774997.........

   Thus, we say that 2-√5 is a irrational number.

   (ii)    (3+√23)-√23

   (3+√23)-√23

   =3+√23-√23

    = 3

    Thus, we say that (3+√23)-√23 is a rational number.

   (iii)    2√77√7

   2√77√7

   =2√7√7√7√7

   =2√7√7

   =27

   Thus, we say that 2√77√7 is a rational number.

   (iv)    1√2

   =0.¯230769 non-terminating repeating.

   (v)    2Ï€

   =0.¯18 non-terminating repeating.

2.   Simplify each of the following expressions:

(i)   (3+√3)(2+√2)

(ii)   (3+√3)(3-√3)

(iii)   (√5+√2)2

(iv)   (√5-√2)(√5+√2)

solution :

(i)   (3+√3)(2+√2)

   (3+√3)(2+√2)

   =(3×2)+(3×√2)+(√3×2)+(√3×√2)

   =6+3√2+2√3+√6

(ii)   (3+√3)(3-√3)

   (3+√3)(3-√3)

   =(3×3)-(3×√3) + (√3×3)-(√3×√3))

   =9-3√3+3√3-3

   =9-3

   =6

(iii)   (√5+√2)2

   (√5+√2)2

   =(√5+√2)(√5+√2)

   =(√5×√5)+(√5×√2)+(√2×√5)+(√2×√2)

   =(5+√10+√10+2)

   =(7+2√10)

(iv)   (√5-√2)(√5+√2)

   (√5-√2)(√5+√2)

   =(√5-√2)(√5+√2)

   =(√5×√5)+(√5×√2)−(√2×√5)-(√2×√2)

   =(5+√10-√10-2)

   =(5-2)

   =(3)

3.    Recall, Ï€ is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, Ï€=cd. This seems to contradict the fact that Ï€ is irrational. How will you resolve this contradiction?

solution :

There is no contradiction. Remember that when you measure a length with a scale or any other device, you only get an approximate rational value So, you may not realise that either c or d is irrational.

4.    Represent (√9.3) on the number line.

solution :

    Step 1: Draw a 9.3 units long line segment AB. Extend AB to C such that BC = 1 unit.

    Step 2: Now, AC = 10.3 units. Let the centre of AC be O.

    Step 3: Draw a semi-circle of radius OC with centre O.

    Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD.

    Step 5: OBD, obtained, is a right angled triangle.

    Here, OD10.32 (radius of semi-circle), OC=10.32, BC = 1

    OB = OC – BC

    â‡’ (10.32)-1=8.32

    Using Pythagoras theorem,

    We get,

    OD2=BD2+OB2

    â‡’ (10.32)2=BD2+(8.32)2

    â‡’ BD2=(10.32)2-(8.32)2

    â‡’ BD2={(10.32)-(8.32)}×{(10.32)+(8.32)}

    â‡’ BD2=(10.3-8.32)×(10.3+8.32)

    â‡’ BD2=(22)×(18.62)

    â‡’ BD2=1×9.3

    â‡’ BD2=9.3

    â‡’ BD=√9.3

    Thus, the length of BD is √9.3.

    Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of √9.3 from O as shown in the figure.

5.    Rationalize the denominators of the following:

(i)    1√7

(ii)    1(√7-√6)

(iii)    1(√5+√2)

(iv)    1(√7-2)

solution :

    (i)    1√7

    Multiply and divide 1√7 By √7.

    =(1√7×(√7√7)).

    =√77.

    (ii)    1(√7-√6)

    Multiply and divide 1(√7-√6) By (√7+√6).

    =1(√7-√6)×(√7+√6)(√7+√6).

    =(√7+√6)(√7-√6)×(√7+√6)

 [(√a-√b)(√a+√b)=(a-b)].

    =(√7+√6)(7-6).

    =(√7+√6)1.

    =(√7+√6) .

    (iii)    1(√5+√2)

    Multiply and divide 1(√5+√2) By (√5-√2).

    =1(√5+√2)×(√5-√2)(√5-√2).

    =(√5-√2)(√5+√2)×(√5-√2)

 [(√a+√b)(√a-√b)=(a-b)].

    =(√5-√2)(5-2).

    =(√5-√2)1.

    =(√5-√2).

    (iv)    1(√7-2)

    Multiply and divide 1(√7-2) By (√7+2).

    =1(√7-2) ×(√7+2)(√7+2) .

    =(√7+2)(√7-2)(√7+2)

 [(√a-b)(√a+b)=(a-b2)].

    =(√7+2)(7-4).

    =(√7+2)3 .



0 Comments