
1. Classify the following numbers as rational or irrational:
(i) 2-√5
(ii) (3+√23)-√23
(iii) 2√77√7
(iv) 1√2
(v) 2Ï€
solution :
(i) 2-√5
2-√5=2-2.2360679774997...........
So, √5=2.236067977499789696409173...........
= - 0.2360679774997.........
Thus, we say that 2-√5 is a irrational number.
(ii) (3+√23)-√23
(3+√23)-√23
=3+√23-√23
= 3
Thus, we say that (3+√23)-√23 is a rational number.
(iii) 2√77√7
2√77√7
=2√7√7√7√7
=2√7√7
=27
Thus, we say that 2√77√7 is a rational number.
(iv) 1√2
=0.¯230769 non-terminating repeating.
(v) 2Ï€
=0.¯18 non-terminating repeating.
2. Simplify each of the following expressions:
(i) (3+√3)(2+√2)
(ii) (3+√3)(3-√3)
(iii) (√5+√2)2
(iv) (√5-√2)(√5+√2)
solution :
(i) (3+√3)(2+√2)
(3+√3)(2+√2)
=(3×2)+(3×√2)+(√3×2)+(√3×√2)
=6+3√2+2√3+√6
(ii) (3+√3)(3-√3)
(3+√3)(3-√3)
=(3×3)-(3×√3) + (√3×3)-(√3×√3))
=9-3√3+3√3-3
=9-3
=6
(iii) (√5+√2)2
(√5+√2)2
=(√5+√2)(√5+√2)
=(√5×√5)+(√5×√2)+(√2×√5)+(√2×√2)
=(5+√10+√10+2)
=(7+2√10)
(iv) (√5-√2)(√5+√2)
(√5-√2)(√5+√2)
=(√5-√2)(√5+√2)
=(√5×√5)+(√5×√2)−(√2×√5)-(√2×√2)
=(5+√10-√10-2)
=(5-2)
=(3)
3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, π=cd. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
solution :
There is no contradiction. Remember that when you measure a length with a scale or any other device, you only get an approximate rational value So, you may not realise that either c or d is irrational.
4. Represent (√9.3) on the number line.
solution :
Step 1: Draw a 9.3 units long line segment AB. Extend AB to C such that BC = 1 unit.
Step 2: Now, AC = 10.3 units. Let the centre of AC be O.
Step 3: Draw a semi-circle of radius OC with centre O.
Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD.
Step 5: OBD, obtained, is a right angled triangle.
Here, OD10.32 (radius of semi-circle), OC=10.32, BC = 1
OB = OC – BC
⇒ (10.32)-1=8.32
Using Pythagoras theorem,
We get,
OD2=BD2+OB2
⇒ (10.32)2=BD2+(8.32)2
⇒ BD2=(10.32)2-(8.32)2
⇒ BD2={(10.32)-(8.32)}×{(10.32)+(8.32)}
⇒ BD2=(10.3-8.32)×(10.3+8.32)
⇒ BD2=(22)×(18.62)
⇒ BD2=1×9.3
⇒ BD2=9.3
⇒ BD=√9.3
Thus, the length of BD is √9.3.
Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of √9.3 from O as shown in the figure.

5. Rationalize the denominators of the following:
(i) 1√7
(ii) 1(√7-√6)
(iii) 1(√5+√2)
(iv) 1(√7-2)
solution :
(i) 1√7
Multiply and divide 1√7 By √7.
=(1√7×(√7√7)).
=√77.
(ii) 1(√7-√6)
Multiply and divide 1(√7-√6) By (√7+√6).
=1(√7-√6)×(√7+√6)(√7+√6).
=(√7+√6)(√7-√6)×(√7+√6)
[(√a-√b)(√a+√b)=(a-b)].
=(√7+√6)(7-6).
=(√7+√6)1.
=(√7+√6) .
(iii) 1(√5+√2)
Multiply and divide 1(√5+√2) By (√5-√2).
=1(√5+√2)×(√5-√2)(√5-√2).
=(√5-√2)(√5+√2)×(√5-√2)
[(√a+√b)(√a-√b)=(a-b)].
=(√5-√2)(5-2).
=(√5-√2)1.
=(√5-√2).
(iv) 1(√7-2)
Multiply and divide 1(√7-2) By (√7+2).
=1(√7-2) ×(√7+2)(√7+2) .
=(√7+2)(√7-2)(√7+2)
[(√a-b)(√a+b)=(a-b2)].
=(√7+2)(7-4).
=(√7+2)3 .
0 Comments